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Context and motivations

Sources of errors when computing the solution of a scientific problem in floating
point arithmetic:

mathematical model,

truncation errors,

data uncertainties,

rounding errors.

Rounding errors may totally corrupt a floating point computation:

accumulation of billions of floating point operations,

intrinsic difficulty to solve the problem accurately.
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Example: polynomial evaluation

Evaluation of univariate polynomials with floating point coefficients:

the evaluation of a polynomial suffers from rounding errors

example : in the neighborhood of a multiple root
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Exact value

p(x) = (x − 2)9 in expanded form
near the multiple root x = 2

evaluated with the Horner algorithm
in IEEE double precision.
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General motivation

How to:
– improve and validate the accuracy of a floating point computation,
– recover the numerical reproducibility of parallel floating-point computation,
– without large computing time overheads ?

More hardware precision

Software simulation of more computing precision

More accurate algorithms

As fast as possible accurate algorithms

Parallelism is everywhere

Reproducibility at least to debug!
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Main issues today

Starting point: IEEE-754 floating point arithmetic

Best possible accuracy for +,−,×, /,√

Add is not associative

Summing n floating numbers : focus on accuracy

Core computation, numerous algos, recently some really smart ones

Computed sum accuracy : doubled or more, faithful or correctly rounded

Summing n floating numbers : focus on running-time and memory print

Running-time and memory print are discriminant factors when computing
the best possible accurate sum

Appreciating the actual performance of one algo is not an easy task :
flop/s ? hardware counters ? compiler options ?
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Reliable and significant measure of the time complexity?

The classic way: count the number of flop

A usual problem: double the accuracy of a computed result

A usual answer for polynomial evaluation (degree n)

Metric Horner CompHorner DDHorner
Flop count 2n 22n + 5 28n + 4
Flop count ratio 1 ≈ 11 ≈ 14
Measured #cycles ratio 1 2.8 – 3.2 8.7 – 9.7

Flop count vs. run-time measures

Flop counts and measured run-times are not proportional

Run-time measure is a very difficult experimental process

Which one trust?
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Reproducible HPC numerical simulations?

Numerical reproducibility of parallel computation

Getting bitwise identical results for every p-parallel run, p ≥ 1

One industrial scale simulation code

Simulation of free-surface flows in 1D-2D-3D hydrodynamics

300 000 loc. of open source Fortran 90

20 years, 4000 registered users, EDF R&D + international consortium

Telemac 2D [5]

2D hydrodynamic: Saint Venant equations

Finite element method, triangular element mesh, sub-domain
decomposition for parallel resolution

Mesh node unknowns: water depth (H) and velocity (U,V)
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A complex Telemac 2D simulation

The Malpasset dam break (1959)

A five year old dam break: 433 dead people and huge damage

Triangular mesh: 26000 elements and 53000 nodes

Simulation: →35min. after break with a 2sec. time step
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How to trust this complex simulation?

A reproducible simulation?

velocity U velocity V depth H
The sequential run 0.4029747E-02 0.7570773E-02 0.3500122E-01
one 64 procs run 0.4935279E-02 0.3422730E-02 0.2748817E-01
one 128 procs run 0.4512116E-02 0.7545233E-02 0.1327634E-01

Reproducibility failure

Up to ×2.5 uncertainty

The privileged sequential run?
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Telemac2D: the simplest gouttedo simulation

The gouttedo simulation test case

2D-simulation of a water drop fall in a square basin

Unknown: water depth for a 0.2 sec time step

Triangular mesh: 8978 elements and 4624 nodes

Expected numerical reproducibility (time step = 1, 2, . . . )

Sequential Parallel p = 2
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A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 1

Sequential Parallel p = 2
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A white plot displays a non-reproducible value
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A white plot displays a non-reproducible value

Numerical reproducibility?

NO numerical reproducibility!

time step = 15

Sequential Parallel p = 2
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Telemac2D: gouttedo

NO numerical reproducibility!

Sequential Parallel p = 2
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Part 1: More accuracy

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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Part 2: More reproducibility

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion
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Part 3: More performance
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Part I

More accuracy
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How to manage accuracy and speed?

So many ways . . . and a new “best one” every year since 1999
1965 Møller, Ross
1969 Babuska, Knuth
1970 Nickel
1971 Dekker, Malcolm
1972 Kahan, Pichat
1974 Neumaier
1975 Kulisch/Bohlender
1977 Bohlender, Mosteller/Tukey
1981 Linnaimaa
1982 Leuprecht/Oberaigner
1983 Jankowski/Semoktunowicz/-
Wozniakowski
1985 Jankowski/Wozniakowski
1987 Kahan

1991 Priest
1992 Clarkson, Priest
1993 Higham
1997 Shewchuk
1999 Anderson
2001 Hlavacs/Uberhuber
2002 Li et al. (XBLAS)
2003 Demmel/Hida, Nievergelt,
Zielke/Drygalla
2005 Ogita/Rump/Oishi,
Zhu/Yong/Zeng
2006 Zhu/Hayes
2008 Rump/Ogita/Oishi
2009 Rump, Zhu/Hayes
2010 Zhu/Hayes

17 / 108



IEEE-754 floating point arithmetic

Floating-point numbers (normal, non zero)

x = (−1)s ·m · 2e = ± 1.x1x2 . . . xp−1︸ ︷︷ ︸
p bits of mantissa

×2e ,

0 1/4 1/2 1����� 2����� 4����� 7.5�������

Rounding
x⊕ yx+ y

The standard model:
fl(a ◦ b) = (1+ ε)(a ◦ b), with |ε| ≤ u = 2−p, or 21−p.

IEEE-754 (1985, 2008)

formats, rounding modes : +,−,×, /,√ are as accurate as possible,
exceptions

u = 2−53 ≈ 10−16 for b64 in IEEE-754
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Using the standard model

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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Floating-point summation: classic results [HFPA,09],[ASNA,06]

Accuracy for backward stable algorithms
Accuracy of the computed sum ≤ (n − 1)× cond × u
cond(

∑
xi ) =

∑ |xi |/|
∑

xi |
No more significant digit in IEEE-b64 for large cond, i.e. > 1016

The length also matters for large n
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Backward stable summation algorithms

Algorithm (A describes a class of summation algorithms)
Let S = {x1, x2, . . . , xn}.
while S contains more than one element do

Remove two numbers x and y from S and add x ⊕ y to S;
end while
Return the remaining element of S.

Recursive summation. . .

. . . with increasing order sorting (IOS): |x1| ≤ |x2| ≤ · · · ≤ |xn|,

. . . with decreasing order (DOS),

insertion summation with IOS,

pairwise summation.
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Accuracy of the computed sum ≤ (n − 1)
∑ |xi |u

Proposition (Another bound)

| ŝn − sn| ≤ u
∑n−1

i=1 |Ti |, where Ti is the i-th partial sum in A.

Minimize this bound or at least every |Ti |.
All the xi have the same sign: recursive with IOS (good), insertion with
IOS (the best).

Cancellation when
∑ |xi | � |

∑
xi |: DOS better than IOS.
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Conclusion of the basic steps

It exists no universally better accurate summation algorithm
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Computing sums more accurately: step 1

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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More accuracy but still conditioning: overview

Arbitrary precision but accuracy still condition dependant
Simulating more precision: double-double, quad-double, . . . , MPFR
Compensated algorithms: Kahan(65), . . . , Sum2(05), SumK(05)
Accuracy . u + cond × uK

No more n dependency while nu ≤ 1.
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One old and famous solution

Algorithm (Kahan’s compensated summation (1965))
s = x1;

c = 0;
for i = 2 : n do
y = xi 	 c ;

t = s ⊕ y ;

c = (t 	 s)	 y ;

s = t

end for

Accuracy improvement in practice: −c approximates s ⊕ y ’s rounding error.

Compensated sum accuracy ≤ 2u + n
∑ |xi |O(u2).
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One example

IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).
Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253 − 1

253

−(254 − 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253 − 1

253

−(254 − 2)

1

2

−1

The exact result is computed
The rounding errors are computed thanks to error-free transformations.
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Compensation

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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The underlined idea of compensated algorithm

Compensation

1 Let’s compute the generated rounding errors

2 and use it further to compensate the whole computation.

−yapp

−x

s = fl(x + y)

x

x + y

+

−

−

s

yapp

y

δ

δ

+y
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Compensating: the later the better?

Approximations in Kahan’s compensated sum

x1 = 2p+1, x2 = 2p+1 − 2, x3 = x4 = · · · = x6 = −(2p − 1)
computed sum = 1, compensated sum = 3, exact sum = 2 (TP).

|s| ≥ |y | or “exponent-wise” at least, round-to-nearest, order 2 rounding
error in y .

Pichat and Neumaier’s compensated summation (72,74)

Accumulate rounding errors and one final correction.

Compensated accuracy ≤ u|∑ xi |+ (0.75n2 + n)u2 ∑ |xi |.
No more cond, no initial sort and n ≤ n′max = 1/3u.

Priest’s doubly compensated summation (92)

Doubly compensated accuracy ≤ 2u|∑ xi |.
No more cond but initial sort of the summands and n ≤ nmax = 1/4u.
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Computing sums more accurately: step 2

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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Next step: towards the best accuracy

Distillation: iterate until faithful or correct rounding

x⊕ yx+ y

Error free transformation (EFT) [x ]→ [x (1)]→ · · · → [x∗]

s.t.
∑

xi =
∑

x∗i et [x∗] returns the expected rounded value.

Kahan (87), . . . , Zhu-Hayes: iFastSum (SISC-09)

More space to keep everything

Long accumulator, hardware oriented: Malcolm (71), Kulish (80)

Cutting the summands: AccSum (SISC-08), FastAccSum (SISC-09)

Summation at a given exponent: HybridSum (SISC-09), OnLineExact
(TOMS-10)

From faithful rounding to correct rounding

Choosing the “right side”: expensive in the break-point neighborhood

e.g. 1+ 2−53 ± 2−106
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Summation at a given exponent: HybridSum (SISC-09), OnLineExact
(TOMS-10)

From faithful rounding to correct rounding
−→ Running-time and memory print are the discriminant factors
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EFT to sum two floating-point numbers

2Sum (Knuth, 65), Fast2Sum (Dekker, 71) for base ≤ 2 and RTN.

a+ b = x + y , with a, b, x , y ∈ F and x = a⊕ b.

Algorithm (Knuth)

function [x,y] = 2Sum(a,b)
x = a⊕ b

z = x 	 a

y = (a	 (x 	 z))⊕ (b 	 z)

Algorithm (|a| > |b|, Dekker)
function [x,y] = Fast2Sum(a,b)
x = a⊕ b

z = x 	 a

y = b 	 z
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Distillate
∑

xi , xi ∈ F

xn−1· · ·x4x3x2x1 xn
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Distillate
∑

xi , xi ∈ F

s1

2Sum

e1

x1 xnxn−1· · ·x4x3x2
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Distillate
∑

xi , xi ∈ F

s1e1 · · · xn−1 xnx4x3

n∑
1

xi = e1 + s1 +
n∑
3

xi
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Distillate
∑

xi , xi ∈ F

s2

2Sum

e2

s1e1 · · · xn−1 xnx4x3
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Distillate
∑

xi , xi ∈ F

s2e2e1 · · · xn−1 xnx4

n∑
1

xi = e1 + e2 + s2 +
n∑
4

xi
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Distillate
∑

xi , xi ∈ F

e4e3 · · · en−2 sn−1e2e1 xn

n∑
1

xi =
n−2∑
1

ei + sn−1 + xn
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Distillate
∑

xi , xi ∈ F

2Sum

sn
en−1

e3 en−2· · ·e4 sn−1e2e1 xn
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Distillate
∑

xi , xi ∈ F

en−1 sne4e3 · · · en−2e2e1

n∑
1

xi =
n−1∑
1

ei + sn =
n∑
1

x
(1)
i

and one iterate within this new vector [x (1)] . . .
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Let’s distillate!

EFT Distillation

x∗n

xnxn−1

· · ·

· · ·

x∗n−1x∗4

x4x3

x∗3x∗2x∗1

x1 x2

Theorem (Zhu-Hayes,09)
Terminating for IEEE-754 : Iterate the distillation
[x ]→ [x (1)]→ · · · → [x (k)]→ · · · converges towards a stable state [x∗] such
that |x∗1 | < |x∗2 | < · · · < |x∗n |, x∗i ⊕ x∗i+1 = x∗i+1 et

∑
xi =

∑
x∗i .

Rmk : the convergence proof uses the round-to-even tie breaking rule.

We need a good stopping criteria!
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EFT to sum n floating-point numbers

Rien ne se perd, rien ne se crée, tout se transforme (Anaxagore–Lavoisier)

EFT vector transformation: (Ogita-Rump-Oishi, 05)
[p1, p2, · · · , pn] 7−→ [q2, q3, · · · , qn, πn]

For (pi )1≤i≤n ∈ F, p1 + p2 = π2 + q2, p2 + p3 = π3 + q3, · · · ,

n∑
i=1

pi = πn +
n∑

i=2

qi , with πn = fl(
n∑

i=1

pi ).
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A priori stopping criteria: go away conditioning!

Sum2, SumK (Ogita-Rump-Oishi,05)

Theorem (OgRO,05)
For every pi in F,∑

pi =
∑

p′i = · · · =
∑

pK
i = · · · ,

cond(
∑

pK
i ) = O(uK )× cond(

∑
pi )
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Accuracy . u + cond × uK
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Accuracy . u + cond × uK
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Step 2: towards faithfully or correctly rounded sums

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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No more cond: new solutions

Distillation iFastSum (09)

Rounding errors quickly vanish in practice.

So distillation soon iterates on shorter vectors.

Recursive calls only for difficult cases, e.g. 1+ 2−53 + 2−106.

How to compute exact partial sums?

Exact summation: cut the summands

Faithfully rounded sum: AccSum (08), FastAccSum (09)

Correctly rounded sum: NearSum (09)

Exact summation: partial sum by exponant + distillation

Faithfully rounded sum: HybridSum (09), OnLineExact (10)
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Computing sums as accurately as possible

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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iFastSum (09)

iFastSum = distallation SumK (K ≥ 2) with a dynamic control of the residual
error until the faithfully or correctly rounded value.

Memory overhead = O(1)

No more cond limitation: always faithfully or correctly rounded sum.

Rounding errors quickly vanish in practice.

So distillation soon iterates on shorter vectors.

Recursive calls only for difficult cases, e.g. 1+ 2−53 + 2−106.
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iFastSum (Zhu-Hayes,09)

[x ]
x1
x2

xi

xn

2Sum
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iFastSum (Zhu-Hayes,09)

ei

s

[x ]
x1
x2

xi

xn

2Sum
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iFastSum (Zhu-Hayes,09)

e1
e2

[e]

s
en−1

ei

n∑
1

xi = s +
n−1∑
1

ei
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iFastSum (Zhu-Hayes,09)

em

e ′count 6= 0

e ′2 6= 0
e ′1 6= 0

e ′i 6= 0

[e ′]

st

2Sum

e1
e2

en−1
s

[e]

Bounding the residual error em = (count)× 1/2ulp(max |st |)
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iFastSum (Zhu-Hayes,09)

st

s

e ′count 6= 0

e ′2 6= 0
e ′1 6= 0

e ′i 6= 0

[e ′]

n∑
1

xi = s + st +
count∑

1

e′i
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iFastSum (Zhu-Hayes,09)

2Sum

s

sts

st

e ′1 6= 0
[e ′]

e ′i 6= 0

e ′2 6= 0

e ′count 6= 0

n∑
1

xi = s + st +
count∑

1

e′i
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iFastSum (Zhu-Hayes,09)

Stopping criteria in 2 steps

1 Stop the distillation when
em = 0 or em < HalfUlp(s)

2 Correct rounding: effect of em to s

and st

I 2 “recursive” calls of the
iFastSum’s main part
if st ± em modifies s or
Round3(s, (st±em)h, (st±em)l) 6= s.

until faithfulness

em
Distill [e ′, st]

2Sum

em

s

sts

st

e ′1 6= 0
[e ′]

e ′i 6= 0

e ′2 6= 0

e ′count 6= 0
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How to stop to distillate!

Principe
Sharp approximation of the exact sum of 3 non overlapping values: 2
floating-points and 1 sign (the value does not matter).

s0 s1 ŝ2

Round3(s0, s1, sign( ŝ2)) = fl(s0 + s1 + ŝ2)

One test of s1

exponent manipulation

but no change of the rounding mode
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Computing sums as accurately as possible

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)
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AccSum proportional to log2(cond).

In practice: how to compute σ and how to extract qi from pi :

M = dlog2(n + 2)e
σ = 2M ·max{|pi |}, for n + 2 ≤ 2M

Extraction of the higher part qi of pi : [qi , p
′
i ] = Fast2Sum(σ, pi )

Properties

Number of extractions: proportional to log2(cond)

Number of summands limitations: n . 1/
√

u ≈ 7 · 107 (alternative exist for
larger n).
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AccSum proportional to log2(cond).

In practice: number of extractions and flop

48 / 108



Computing sums as accurately as possible: step 2

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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Partial sums by exponent (sorting) + distillation

Zhu-Hayes : HybridSum (09), OnLineExact (10)

Exponent extraction and sorting, then distillation

Principle :
1 With no loss, transforming the entry vector to one or two (short) vectors

which size equals the exponent range: 2048 for IEEE-b64 ;
HybridSum : split + 1 short vector
OnLineExact : 2Sum+ 2 vectors concatenated in a very short vector (of non
zero entries)

2 then distillate this very short vector.
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HybridSum (09) while n ≤ 7 · 107 in IEEE-b64

Idea : split and exact accumulation with
⊕

N < 2bt/2c
Exact for

[exp(xi)
l ]

[exp(xi)
h]+

+

[0]
[1]

[a]

[2047]

[x ]
x1
x2

xn

(xi)
h (xi)

l
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OnLineExact (10)

Exact for
N < 2bt/2c

[a2][a1]
[0]
[1]

[2bt/2c]

[exp(xi)] +

2Sum

[x ]
x1
x2

xi

xn
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OnLineExact (10)

Then Swap([b1, b2], [a1, a2])

+[exp(y)]

When N > 2bt/2c

[b2][b1]

2Sum

[0]
[1]

y y ′

[exp(xi)]

[1]

[a1] [a2]
[0]

[2bt/2c]
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OnLineExact (10)

[exp(xi)] +

[2bt/2c]

[a1] [a2]
[0]
[1]

2Sum

xn

xi

x2
x1
[x ]
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OnLineExact (10)

Return iFastSum(a, length(a));

a := [a1]&[a2] ;
Remove 0;

[a1]
[0]
[1]

[2bt/2c]

[a2]

52 / 108



More EFT and accurate algorithms

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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More accuracy: more results

Other EFT to compensate

Multiplication: a× b = (a⊗ b) + e

FMA: a× b + c = FMA(a, b, c) + e1 + e2, and
FMA(a, b, c) = RN(a× b + c)

Polynomial evaluation

Other compensated algorithms

Dot product

Horner and derivative (dsynthetic div.), de Casteljau (Bernstein), Clenshaw
(Chebychev)
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Sterbenz’s lemma: when subtraction is exact

Theorem (Sterbenz, 72)
In a radix-β floating-point system with subnormal numbers, if x and y are finite
floating-point numbers such that

y

2
≤ x ≤ 2y ,

then x − y is a floating-point number.

Comments

Exact subtraction for the four IEEE-754 rounding-modes

Exact subtraction vs. catastrophic cancellation?

Used in the previous EFT sum proofs
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EFT: the multiplication case

Theorem (Dekker)
The multiply rounding-error xy − (x ⊗ y) is a floating-point number when no
overflow occurs.

When one FMA is available, next algorithm computes the multiply-EFT:

xy = r1 + r2.

Algorithm (2ProdFMA)
r1 = FMA(x , y , 0); //r1 = x ⊗ y

r2 = FMA(x , y ,−r1); //r2 = xy − r1
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The multiplication case when no available FMA

Let C = βs + 1 where s < p, the next algo splits the p-digit floating-point
number x in two parts xh, xl of p − s and s digits.

Algorithm (split - Veltkamp, 68)
r_shift = C ⊗ x

head = x 	 r_shift

xh = r_shift ⊕ head

xl = x 	 xh

Theorem (Dekker, 72; Boldo, 06)
When no overflow occurs,

x = xh + xl .
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The multiplication case when no available FMA

When no overflow occurs, next algorithm computes the multiply-EFT:

xy = r1 + r2.

Algorithm (2prod - Dekker, 72)
(xh, xl) = split(x);

(yh, yl) = split(y);

r1 = x ⊗ y ;

high = −r1 ⊕ (xh ⊗ yh);

mid1 = high ⊕ (xh ⊗ yl);

mid2 = mid1 ⊕ (xl ⊗ yh);

r2 = mid2 ⊕ (xl ⊗ yl); //low part
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The compensated dot product (Ogita-Rump-Oishi, 05)

EFT-DotProd:
∑n

i=1 xiyi = p +
∑n

i=1 πi +
∑n−1

i=1 σi =
∑2n

i=1 zi .

Algorithm (Compensated DotProd)
(s1, c1) = 2Prod(x1, y1);
for i = 2 : n do
(pi , πi ) = 2Prod(xi , yi );

(si , σi ) = 2Sum(pi , si−1);

ci = ci−1 ⊕ (πi ⊕ σi );

end for
return sn ⊕ cn;

Theorem (Ogita-Rump-Oishi, 05)
Compensated dot product accuracy ≤ u|∑n

i=1 xiyi |+O(n2u2)
∑ |xiyi |.
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The compensated dot product (Ogita-Rump-Oishi, 05)

60 / 108



The compensated dot product (Ogita-Rump-Oishi, 05)
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The Horner polynomial evaluation (Graillat-Langlois-Louvet, 07)

EFT-Horner:
∑n

i=0 aix
i = p +

∑n−1
i=0 πix

i +
∑n−1

i=0 σiy
i = p + π(x) + σ(x).

Algorithm (Compensated Horner)
rn = an;
for i = n − 1 : (−1) : 0 do
(pi , πi ) = 2Prod(ri+1, x);

(ri , σi ) = 2Sum(pi , ai );

qi = πi ⊕ σi ; //correcting polynomial coefficient
end for;
r = r0 ⊕ Horner(q, x);

return r ;

Theorem (Langlois-Louvet, 07)
Compensated Horner accuracy ≤ u|p(x)|+O(4n2u2)

∑n
i=0 |ai ||x i |.
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The compensated Horner evaluation (Louvet’s PhD, 07)
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The compensated Horner evaluation: FMA variations
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Other compensated polynomial evaluations

Recent extensions

derivative Horner evaluation — synthetic division (Jiang et al., 12)

Clenshaw algorithm for Chebychev basis (Jiang et al., 11)

de Casteljau algorithm for Bernstein basis (Jiang et al., 10)
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To conclude this Part 1

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion
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More accurate sums: conclusion

An “ultimately accurate” floating-point summation algorithm cannot
be very simple. J.M. Muller et al. [HFPA,09]

A lot of algorithms!

Condition dependency and accuracy bounds for classic ones

Arbitrarily accurate compensated ones: Sum2, SumK

Faithfully or correctly rounded recent ones: AccSum, FastAccSum,
iFastSum, HybdridSum, OnLineExact

“In place” solutions vs. exponent manipulations

How to choose? Running time performance!
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Part II

More reproducibility
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6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion
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Reproducibility failure in Telemac2D simulation
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Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Original code
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Today’s issues

Case study

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 modules: Tomawac, Telemac2D

Feasibility

How to recover reproducibility?

Sources of non-reproducibility?

Do existing techniques apply? how easily?

• Compensation yields reproducibility here!

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!

71 / 108



Today’s issues

Case study

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 modules: Tomawac, Telemac2D

Feasibility

How to recover reproducibility?

Sources of non-reproducibility?

Do existing techniques apply? how easily?

• Compensation yields reproducibility here!

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!

71 / 108



Today’s issues

Case study

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 modules: Tomawac, Telemac2D

Feasibility

How to recover reproducibility?

Sources of non-reproducibility?

Do existing techniques apply? how easily?

• Compensation yields reproducibility here!

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!
71 / 108



6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion
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Parallel reduction and compensation techniques

Non associative floating point addition

The computed value depends on the operation order

Parallel reduction of undefined order generates reproducibility failure

Compensate rounding errors with error free transformations
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a⊕b c⊕d
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a b c d

a⊕b
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Parallel reduction and compensation techniques

Non associative floating point addition

The computed value depends on the operation order

Parallel reduction of undefined order generates reproducibility failure

Compensate rounding errors with error free transformations

a b c d

a⊕be1 c⊕d e2

(a⊕b)⊕(c⊕d)e3

a b c d

a⊕b f1

(a⊕b)⊕c f2

((a⊕b)⊕c)⊕d f3

((a⊕b)⊕(c⊕d)) ⊕ ((e1 ⊕ e2)⊕ e3) = (((a⊕b)⊕c)⊕d) ⊕((f1 ⊕ f2)⊕ f3)

Should be repeted for too ill-conditionned sums
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Finite element assembly: the sequential case

The assembly step: V (i) =
∑

elements Wel(i)

compute the inner node values V (i)

accumulating local Wel for every el that contains i

!"

!"#
$$#

%&#

"!#

"#
&# '

'#
()*+,'-#

+#
*+#

The assembly loop
for p = 1,np //p: triangular local number (np=3)
for el = 1,nel

i = IKLE(el,p) %

<–- LOOP INDEX INDIRECTION

V(i) = V(i) + W(el,p) //i: domain global number
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Finite element assembly: the parallel case

Interface point assembly: communications and reductions
V (i) =

∑
Dk

V (i) for sub-domains Dk , k = 1...p

sequential parallel sub-domains

inner nodes −→ interface points

V (i) = a VD1(i) = b VD2(i) = c

V (i) = b + c = a
Interface point assembly

Exact arithmetic
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Finite element assembly: the parallel case

Interface point assembly: communications and reductions
V (i) =

⊕
Dk
V (i) for sub-domains Dk , k = 1...p

sequential parallel sub-domains

inner nodes −→ interface points

V (i) = â VD1(i) = b̂ VD2(i) = ĉ

V (i) = b̂ ⊕ ĉ 6= â
Interface point assembly

Floating point arithmetic
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Basic ingredients

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion
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Sources of non reproducibility in Telemac2D

Culprits: theory

1 Building step: interface point assembly

2 Solving step (conjugate gradient): parallel matrix-vector and dot products

Culprits: practice = optimization

Interface point assembly and linear system solving are merged

Element-by-element storage (EBE) of the FE matrix
EBE parallel matrix-vector product: no BLAS
Everything is vector, no matrix!

Wave equation, “mass-lumping” and associated algebraic transformations
System decoupling and many diagonal matrices
Everything is vector, no matrix!

76 / 108



Sources of non reproducibility in Telemac2D

Culprits: theory

1 Building step: interface point assembly

2 Solving step (conjugate gradient): parallel matrix-vector and dot products

Culprits: practice = optimization

Interface point assembly and linear system solving are merged

Element-by-element storage (EBE) of the FE matrix
EBE parallel matrix-vector product: no BLAS
Everything is vector, no matrix!

Wave equation, “mass-lumping” and associated algebraic transformations
System decoupling and many diagonal matrices
Everything is vector, no matrix!

76 / 108



Sources of non reproducibility in Telemac2D

The Telemac2D FE steps

Solution U, V

diagonal resolution

conjugate gradient

Solution H

Interface point assembly:

A1d in each iteration

C2 = Bu − AuhH

C3 = Bv − AvhH

Interface point assembly:

C2,C3

System equation AX = C

A2,A3 : diagonal matrices

A1 = Ahh − AhuA
−1
2 Auh − AhvA

−1
3 Avh

C1 = Bh − AhuA
−1
2 Bu − AhvA

−1
3 Bv

Interface point assembly:

A2,A3,C1

Ahh Ahu Ahv
Auh Auu 0
Avh 0 Avv


H

U

V

 =

Bh
Bu
Bv



wave equation

A1 0 0
0 A2 0
0 0 A3


H

U

V

 =

C1
C2
C3



Mesh (elements, nodes)

Continuous domain

Discretisation

FE assembly +

algebraic computation

H

A1, C1

A2, A3
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Recovering reproducibility in a finite element resolution

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion
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Recovering reproducibility in Telemac2D

Sources

FE assembly: diagonal of the matrices and second members

Resolution: EBE matrix-vector and dot products

Wave equation: algebraic transformations and diagonal resolutions

Reproducible resolution: principles
vector V → [V ,EV ]→ V + EV

Computes EV in the FE assembly of V

Propagates EV over each V operation

Compensates all nodes while assembling the Interface Point

Compensate MPI parallel dot products that include MPI reduction
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Reproducible FE assembly

i : any node; Wel(i): contribution for every el that contains i

Original FE assembly: V (i) =
∑

elements Wel(i)

V (i) = Wel1(i) +Wel2(i) + · · ·+Welni (i)

Modified FE assembly: [V (i),EV (i)] = ReprodAsselementsWel(i)

V (i) = Wel1(i) +Wel2(i) + · · ·+Welni (i)

↓ ↓ ↓
e1 e2 eni

EV (i) = e1 + e2 + · · ·+ eni−1
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Reproducible interface point assembly

i : one interface point of D1,D2, · · · ,Dk−1,Dk

Original IP assembly: V (i) =
∑

Dk
V (i)

Communicate VDi to D1,D2, · · · and compute:
V (i) = VD1(i) + VD2(i) + · · ·+ VDk−1(i) + VDk

(i)

Modified IP assembly: [V (i),EV (i)] = ReprodAssDk
[V (i),EVDk

(i)]

Communicate [VDi ,EDVi
] to D1,D2, · · · and compute:

V (i) = VD1(i) + VD2(i) + · · ·+ VDk−1(i) + VDk
(i)

↓ ↓ ↓
δ1 δ2 δk−1

EV (i) = (EVD1
(i) + EVD2

(i) + δ1) + · · ·+ (EVDk−1
(i) + EVDk

(i) + δk−1)

Reproducibility: at the IP assembly step
[V ,EV ] −→ V + EV compensates every node value
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FE assembly: implementation

Main steps

For every vector value: FE assembly + IP assembly

ASSVEC subroutine

1 !X refers to VEC and ERRX refers to SVEC%E
2 DO IDP = 1 , NDP
3 DO IELEM = 1 , NELEM
4
5 X(IKLE(IELEM,IDP))=X(IKLE(IELEM,IDP))+W(IELEM,IDP)
6
7
8
9
10
11 ENDDO
12 ENDDO

1 !FE assembly in ASSVEC
2
3 CALL ASSVEC(VEC, IKLE, NPT ,NELEM,NELMAX,IELM1,
4 & T,INIT,LV,MSK,MASKEL,NDP)
5
6
7
8
9 !Interface point assembly in PARCOM

10 IF(ASSPAR) CALL PARCOM(SVEC,2,MESH)
11
12
13
14
15
16
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Interface point assembly: implementation

1 ! Receive step
2 DO IL=1,NB_NEIGHB
3 IKA = NB_NEIGHB_PT(IL)
4 IPA = LIST_SEND(IL)
5 CALL P_IREAD(BUF_RECV(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,RECV_REQ(IL))
6
7 ENDDO
8 ! Send step
9 DO IL=1,NB_NEIGHB
10 IKA = NB_NEIGHB_PT(IL)
11 IPA = LIST_SEND(IL)
12 ! Initializes the communication arrays
13 K = 1
14 DO J=1,NPLAN
15 DO I=1,IKA
16 II=NH_COM(I,IL)
17 BUF_SEND(K,IL) =V1(II,J)
18
19 K=K+1
20 ENDDO
21 ENDDO
22 CALL P_IWRIT(BUF_SEND(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,SEND_REQ(IL))
23
24 ENDDO
25 ! Wait received messages
26 DO IL=1,NB_NEIGHB
27 IKA = NB_NEIGHB_PT(IL)
28 IPA = LIST_SEND(IL)
29 CALL P_WAIT_PARACO(RECV_REQ(IL),1)
30 K=1
31 DO J=1,NPLAN
32 DO I=1,IKA
33 II=NH_COM(I,IL)
34 V1(II,J)=V1(II,J)+ BUF_RECV(K,IL)
35
36
37
38
39 K=K+1
40 ENDDO
41 ENDDO
42 ENDDO
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Reproducible FE assembly: implementation

Main steps

For every vector value: FE assembly + IP assembly + compensation

ASSVEC subroutine

1 !X refers to VEC and ERRX refers to SVEC%E
2 DO IDP = 1 , NDP
3 DO IELEM = 1 , NELEM
4 IF (MODASS.EQ.1)
5 & X(IKLE(IELEM,IDP))=X(IKLE(IELEM,IDP))+W(IELEM,IDP)
6 ELSEIF (MODASS.EQ.3) THEN
7 CALL 2SUM(X(IKLE(IELEM,IDP)),
8 & W(IELEM,IDP),X(IKLE(IELEM,IDP)),ERROR)
9 ERRX(IKLE(IELEM,IDP))=ERRX(IKLE(IELEM,IDP))+ERROR
10 ENDIF
11 ENDDO
12 ENDDO

1 ! Note: VEC is a reference to SVEC%R
2 IF(MODASS.EQ.1) THEN
3 CALL ASSVEC(VEC, IKLE, NPT ,NELEM,NELMAX,IELM1,
4 & T,INIT,LV,MSK,MASKEL,NDP)
5 ELSEIF (MODASS.EQ.3) THEN
6 CALL ASSVEC(VEC, IKLE, NPT ,NELEM,NELMAX,IELM1,
7 & T,INIT,LV,MSK,MASKEL,NDP,SVEC%E)
8 ENDIF
9 ! Implicit modification in PARCOM
10 IF(ASSPAR) CALL PARCOM(SVEC,2,MESH)
11 IF(ASSPAR.AND.MODASS.EQ.3) THEN
12 !The compensation of all the values
13 DO I = 1 , MESH%NPOIN
14 VEC(I)= VEC(I)+SVEC%E(I)
15 ENDDO
16 ENDIF
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Reproducible interface point assembly: implementation

1 ! Receive step
2 DO IL=1,NB_NEIGHB
3 IKA = NB_NEIGHB_PT(IL)
4 IPA = LIST_SEND(IL)
5 CALL P_IREAD(BUF_RECV(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,RECV_REQ(IL))
6 CALL P_IREAD(BUF_RECV_ERR(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,RECV_REQ(IL))
7 ENDDO
8 ! Send step
9 DO IL=1,NB_NEIGHB
10 IKA = NB_NEIGHB_PT(IL)
11 IPA = LIST_SEND(IL)
12 ! Initializes the communication arrays
13 K = 1
14 DO J=1,NPLAN
15 DO I=1,IKA
16 II=NH_COM(I,IL)
17 BUF_SEND(K,IL) =V1(II,J)
18 BUF_SEND_ERR(K,IL) =ERRX(II)
19 K=K+1
20 ENDDO
21 ENDDO
22 CALL P_IWRIT(BUF_SEND(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,SEND_REQ(IL))
23 CALL P_IWRIT(BUF_SEND_ERR(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,SEND_REQ(IL))
24 ENDDO
25 ! Wait received messages
26 DO IL=1,NB_NEIGHB
27 IKA = NB_NEIGHB_PT(IL)
28 IPA = LIST_SEND(IL)
29 CALL P_WAIT_PARACO(RECV_REQ(IL),1)
30 K=1
31 DO J=1,NPLAN
32 DO I=1,IKA
33 II=NH_COM(I,IL)
34 ! Original version: V1(II,J)=V1(II,J)+ BUF_RECV(K,IL)
35 CALL 2SUM(V1(II,J),BUF_RECV(K,IL),V1(II,J),ERROR1)
36 CALL 2SUM(ERRV(II),BUF_RECV_ERR(K,IL),ERRV(II),ERROR2)
37 ERROR=ERROR1+ERROR2
38 ERRV(II)=ERRV(II)+ERROR
39 K=K+1
40 ENDDO
41 ENDDO
42 ENDDO
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Tomawac case

Non-reproducible Tomawac
Wave propagation in coastal areas
Mesh node unknowns:
height, frequency and direction of the waves
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Reproducible Tomawac

Accurate compensated summation [15]
Integer conversion [16]
Demmel-Nguyen’s reproducible sums [2]
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Algebraic operation: the vector case

Reproducible algebraic vector operations

openTelemac’s included library: BIEF

Entry-wise vector ops: copy, opp/inv., add/sub, Hadamard prod., . . .

Applies also for diagonal matrix

Propagate rounding errors to compensate while assembling IP

Example: Hadamard product

Original version
X ,Y 7−→ V = X ◦ Y
V (i) = X (i) · Y (i)

Modified version
[X ,EX ], [Y ,EY ] 7−→ [V ,EV ]

with (V , eV ) = 2Prod(X ,Y )

and EV = X ◦ EY + Y ◦ EX + eV
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What is reproducible now?

Most of the linear system:

FE assembly

algebraic vector operations

interface point assembly

except:

the matrix of the H system

its dependencies: the second
members of the U and V

systems

Next step:

conjugate gradient

Partially reproducible Telemac2D

Diagonal resolutions:
C2 = Bu − AuhH,

C3 = Bv − AvhH.
Interface point assembly:

C2,C3

Solution U,V

Conjugate gradient :
Interface point assembly:
A1d in each iteration

Solution H

Wave equation:
A2,A3 : diagonal matrices,

A1 = Ahh − AhuA
−1
2 Auh − AhvA

−1
3 Avh,

C1 = Bh − AhuA
−1
2 Bu − AhvA

−1
3 Bv ,

Interface point assembly:
A2,A3,C1

H

A1,C1

A2, A3
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Towards a reproducible conjugate gradient

Initialization: a given d0

r0 = AX0 − B;

ρ0 =
(r0, d0)

(Ad0, d0)
; X1 = X0 − ρ0d0

Iterations until stopping criteria:

rm = rm−1 − ρm−1Adm−1

dm = rm +
(rm, rm)

(rm−1, rm−1)
dm−1

ρm =
(rm, dm)

(dm, Adm)

X m+1 = X m − ρmdm

A = [A1, EA1 ]

B = C1

X = H

Non-reproducibility sources
EBE matrix-vector product

dot product
MPI reduction
weighted dot products for IP shared by p sub-domains
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The EBE storage

M = D +
nel∑

el=1

Xel

nodes i ∈ [1, np], elements el ∈ [1, nel ], element vertices j , k, l ∈ el

M is decomposed as:

1 assembled diagonal D[np] : D = [D(1), · · · ,D(np)]

2 elementary extra-diagonal Xel [6]:

Xel =

 · Xjk(el) Xjl(el)

Xkj(el) · Xkl(el)

Xlj(el) Xlk(el) ·

 = [Xel(1), · · · ,Xel(6)]
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The EBE Matrix-Vector product

R = M · V = D · V +
nel∑

el=1

Xel · Vel

Steps of the EBE matrix-vector product

1 R1(i) = D(i) · V (i), i ∈ [1, np]

2 Xel .Vel = [Xel(1) · V (k),Xel(2) · V (l), · · · ,Xel(6) · V (k)], el ∈ [1, nel ]

3 FE assembly → R2[np]: R2 =
∑nel

el=1 Xel · Vel

4 R = R1 + R2

5 IP assembly: R(i) =
∑

Dk
R(i) for all IP i
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Reproducible EBE matrix-vector product

Original EBE matrix-vector product

R = D · V +
∑nel

el=1 Xel · Vel

R(i) =
∑

Dk
R(i)

Reproducible EBE matrix-vector product

[R,ER ] = [D,ED ]◦V + ReprodAssnel
el=1Xel · Vel

R(i) = ReprodAssDk
[R(i),ER(i)]

Compensation: R + ER
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A reproducible conjugate gradient

Initialization: a given d0

r0 = AX0 − B;

ρ0 =
(r0, d0)

(Ad0, d0)
; X1 = X0 − ρ0d0

Iterations until stopping criteria:

rm = rm−1 − ρm−1Adm−1

dm = rm +
(rm, rm)

(rm−1, rm−1)
dm−1

ρm =
(rm, dm)

(dm, Adm)

X m+1 = X m − ρmdm

A = [A1, EA1 ]

B = C1

X = H

Non-reproducibility: sources and solutions
Reproducible EBE matrix-vector product

dot product
MPI reduction: a parallel compensated dot2
weights: (1/k, 1/k, . . . , 1/k)→ (1, 0, . . . , 0)

Reproducible operations −→ reproducible results

Same errors for both sequential and parallel executions
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Reproducible Telemac2D

Reproducible Telemac2D

Diagonal resolutions:
C2 = Bu − AuhH,

C3 = Bv − AvhH.
Interface point assembly:

C2,C3

Solution U,V

Conjugate gradient :
Interface point assembly:
A1d in each iteration

Solution H

Wave equation:
A2,A3 : diagonal matrices,

A1 = Ahh − AhuA
−1
2 Auh − AhvA

−1
3 Avh,

C1 = Bh − AhuA
−1
2 Bu − AhvA

−1
3 Bv ,

Interface point assembly:
A2,A3,C1

H

A1,C1

A2, A3

Execution: Sequential 2 procs 4 procs p procs

Original code
Non-reproducible
original code

Reproducible
code

reproducibilityaccuracy
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Reproducible gouttedo!
Time step 1p=1 p=2

p=4 p=8
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Reproducible gouttedo!

Time step 15p=1 p=2

p=4 p=8
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Runtime extra-cost for reproducible simulations

Measures, test cases and mesh sizes

hardware cycle counter: rdtsc

gouttedo

mesh sizes: 4624, 18225, 72361 nodes
(1, ≈ ×4, ≈ ×16)

#nodes
#proc. 4624 18225 72361

2 72 143 280
4 304 674 1368
8 501 1152 2020

Number of IP

Hardware and software env.

openTelemac v7.2

socket: Intel Xeon E5-2660 2.20GHz (L3 cache = 20 M)

2 sockets of 8 cores each

GNU Fortran 4.6.3, -O3

OpenMPI 1.5.4

Linux 3.5.0-54-generic
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The core runtime extra-cost for reproducible gouttedo

gouttedo core: no input/output steps, just building+solving

0 2 4 8
# processors

108

109

1010

1011

1012

#
cy

cl
es

x 1.64
x 1.83

x 2.21

x 2.34

x 1.31

x 1.44

x 1.59

x 1.88

x 1.16

x 1.23

x 1.43

x 1.71

Telemac v7, gouttedo
Original,         #nodes= 4624
Reproducible, #nodes= 4624
Original,         #nodes= 18225
Reproducible, #nodes= 18225
Original,         #nodes= 72361
Reproducible, #nodes= 72361
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Conclusion

Recovering numerical reproducibility

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 reproducible modules: Tomawac, Telemac2D

• Integration in the next openTelemac version: current work

Feasibility

How to recover reproducibility? Sources of non-reproducibility? Do existing
techniques apply? how easily?

• Hand-made analysis of the computing workflow

• Compensation yields reproducibility here!

• Fits well to the openTelemac’s vector library

• Other existing techniques also apply and more or less easily [11]
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Conclusion

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!

Reproducibility at a larger scale: the whole openTelemac software suite

Does it still working for complex, large and real-life simulations?

• The two FE test cases are significant enough to validate the methodology

• Localization of the failure sources is difficult to automatize

• but the methodology application is easy for the software developpers
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Other existing techniques

Existing techniques to recover numerical reproducibility in summation

Accurate compensated summation [15]

Demmel-Nguyen’s reproducible sums [2]

Integer convertion [16]
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