
Ecole thématique PRECIS 2017, Fréjus, 15-19 mai 2017

Précision et Reproductibilité
en Calcul et Informatique Scientifique :
garantir la reproductibilité numérique
concilier précision et performance

Philippe Langlois, David Parello
DALI, University of Perpignan Via Domitia
LIRMM, UMR 5506 CNRS-UM, France

1 / 108

Acknowledgement and collaboration

Joint work with (past or current) members of the DALI research team in
University of Perpignan:

Prof. B. Goossens,
Dr. N. Louvet,
Dr. D. Parello,

Ch. Chohra,
R. Nheili,

C. Porada.

and colleagues:

Ch. Denis (EDF R&D, CMLA),
J.-M. Hervouet (EDF R&D).

2 / 108

Context and motivations

Sources of errors when computing the solution of a scientific problem in floating
point arithmetic:

mathematical model,

truncation errors,

data uncertainties,

rounding errors.

Rounding errors may totally corrupt a floating point computation:

accumulation of billions of floating point operations,

intrinsic difficulty to solve the problem accurately.

3 / 108

Context and motivations

Sources of errors when computing the solution of a scientific problem in floating
point arithmetic:

mathematical model,

truncation errors,

data uncertainties,

rounding errors.

Rounding errors may totally corrupt a floating point computation:

accumulation of billions of floating point operations,

intrinsic difficulty to solve the problem accurately.

3 / 108

Example: polynomial evaluation

Evaluation of univariate polynomials with floating point coefficients:

the evaluation of a polynomial suffers from rounding errors

example : in the neighborhood of a multiple root

-1.5e-10

-1e-10

-5e-11

 0

 5e-11

 1e-10

 1.5e-10

 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08

Exact value

p(x) = (x − 2)9 in expanded form
near the multiple root x = 2

evaluated with the Horner algorithm
in IEEE double precision.

4 / 108

Example: polynomial evaluation

Evaluation of univariate polynomials with floating point coefficients:

the evaluation of a polynomial suffers from rounding errors

example : in the neighborhood of a multiple root

-1.5e-10

-1e-10

-5e-11

 0

 5e-11

 1e-10

 1.5e-10

 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08

Horner algorithm
Exact value

p(x) = (x − 2)9 in expanded form
near the multiple root x = 2
evaluated with the Horner algorithm
in IEEE double precision.

4 / 108

General motivation

How to:
– improve and validate the accuracy of a floating point computation,
– recover the numerical reproducibility of parallel floating-point computation,
– without large computing time overheads ?

More hardware precision

Software simulation of more computing precision

More accurate algorithms

As fast as possible accurate algorithms

Parallelism is everywhere

Reproducibility at least to debug!

5 / 108

Main issues today

Starting point: IEEE-754 floating point arithmetic

Best possible accuracy for +,−,×, /,√

Add is not associative

Summing n floating numbers : focus on accuracy

Core computation, numerous algos, recently some really smart ones

Computed sum accuracy : doubled or more, faithful or correctly rounded

Summing n floating numbers : focus on running-time and memory print

Running-time and memory print are discriminant factors when computing
the best possible accurate sum

Appreciating the actual performance of one algo is not an easy task :
flop/s ? hardware counters ? compiler options ?

6 / 108

Reliable and significant measure of the time complexity?

The classic way: count the number of flop

A usual problem: double the accuracy of a computed result

A usual answer for polynomial evaluation (degree n)

Metric Horner CompHorner DDHorner
Flop count 2n 22n + 5 28n + 4
Flop count ratio 1 ≈ 11 ≈ 14
Measured #cycles ratio 1 2.8 – 3.2 8.7 – 9.7

Flop count vs. run-time measures

Flop counts and measured run-times are not proportional

Run-time measure is a very difficult experimental process

Which one trust?

7 / 108

Reproducible HPC numerical simulations?

Numerical reproducibility of parallel computation

Getting bitwise identical results for every p-parallel run, p ≥ 1

One industrial scale simulation code

Simulation of free-surface flows in 1D-2D-3D hydrodynamics

300 000 loc. of open source Fortran 90

20 years, 4000 registered users, EDF R&D + international consortium

Telemac 2D [5]

2D hydrodynamic: Saint Venant equations

Finite element method, triangular element mesh, sub-domain
decomposition for parallel resolution

Mesh node unknowns: water depth (H) and velocity (U,V)

8 / 108

A complex Telemac 2D simulation

The Malpasset dam break (1959)

A five year old dam break: 433 dead people and huge damage

Triangular mesh: 26000 elements and 53000 nodes

Simulation: →35min. after break with a 2sec. time step

8 / 108

How to trust this complex simulation?

A reproducible simulation?

velocity U velocity V depth H
The sequential run 0.4029747E-02 0.7570773E-02 0.3500122E-01
one 64 procs run 0.4935279E-02 0.3422730E-02 0.2748817E-01
one 128 procs run 0.4512116E-02 0.7545233E-02 0.1327634E-01

Reproducibility failure

Up to ×2.5 uncertainty

The privileged sequential run?

8 / 108

Telemac2D: the simplest gouttedo simulation

The gouttedo simulation test case

2D-simulation of a water drop fall in a square basin

Unknown: water depth for a 0.2 sec time step

Triangular mesh: 8978 elements and 4624 nodes

Expected numerical reproducibility (time step = 1, 2, . . .)

Sequential Parallel p = 2

9 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 1

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 2

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 3

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 4

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 5

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 6

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 7

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 8

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 9

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 10

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 11

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 12

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 13

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

time step = 14

Sequential Parallel p = 2

10 / 108

A white plot displays a non-reproducible value

Numerical reproducibility?

NO numerical reproducibility!

time step = 15

Sequential Parallel p = 2

10 / 108

Telemac2D: gouttedo

NO numerical reproducibility!

Sequential Parallel p = 2

11 / 108

Part 1: More accuracy

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

12 / 108

Part 2: More reproducibility

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

13 / 108

Part 3: More performance

14 / 108

Part I

More accuracy

15 / 108

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

16 / 108

How to manage accuracy and speed?

So many ways . . . and a new “best one” every year since 1999
1965 Møller, Ross
1969 Babuska, Knuth
1970 Nickel
1971 Dekker, Malcolm
1972 Kahan, Pichat
1974 Neumaier
1975 Kulisch/Bohlender
1977 Bohlender, Mosteller/Tukey
1981 Linnaimaa
1982 Leuprecht/Oberaigner
1983 Jankowski/Semoktunowicz/-
Wozniakowski
1985 Jankowski/Wozniakowski
1987 Kahan

1991 Priest
1992 Clarkson, Priest
1993 Higham
1997 Shewchuk
1999 Anderson
2001 Hlavacs/Uberhuber
2002 Li et al. (XBLAS)
2003 Demmel/Hida, Nievergelt,
Zielke/Drygalla
2005 Ogita/Rump/Oishi,
Zhu/Yong/Zeng
2006 Zhu/Hayes
2008 Rump/Ogita/Oishi
2009 Rump, Zhu/Hayes
2010 Zhu/Hayes

17 / 108

IEEE-754 floating point arithmetic

Floating-point numbers (normal, non zero)

x = (−1)s ·m · 2e = ± 1.x1x2 . . . xp−1︸ ︷︷ ︸
p bits of mantissa

×2e ,

0 1/4 1/2 1����� 2����� 4����� 7.5�������

Rounding
x⊕ yx+ y

The standard model:
fl(a ◦ b) = (1+ ε)(a ◦ b), with |ε| ≤ u = 2−p, or 21−p.

IEEE-754 (1985, 2008)

formats, rounding modes : +,−,×, /,√ are as accurate as possible,
exceptions

u = 2−53 ≈ 10−16 for b64 in IEEE-754
18 / 108

Using the standard model

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

19 / 108

Floating-point summation: classic results [HFPA,09],[ASNA,06]

Accuracy for backward stable algorithms
Accuracy of the computed sum ≤ (n − 1)× cond × u
cond(

∑
xi) =

∑ |xi |/|
∑

xi |
No more significant digit in IEEE-b64 for large cond, i.e. > 1016

The length also matters for large n

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Accuracy of the polynomial evaluation [n=50]

u

1/u

!2n cond

20 / 108

Backward stable summation algorithms

Algorithm (A describes a class of summation algorithms)
Let S = {x1, x2, . . . , xn}.
while S contains more than one element do

Remove two numbers x and y from S and add x ⊕ y to S;
end while
Return the remaining element of S.

Recursive summation. . .

. . . with increasing order sorting (IOS): |x1| ≤ |x2| ≤ · · · ≤ |xn|,

. . . with decreasing order (DOS),

insertion summation with IOS,

pairwise summation.

21 / 108

Accuracy of the computed sum ≤ (n − 1)
∑ |xi |u

Proposition (Another bound)

| ŝn − sn| ≤ u
∑n−1

i=1 |Ti |, where Ti is the i-th partial sum in A.

Minimize this bound or at least every |Ti |.
All the xi have the same sign: recursive with IOS (good), insertion with
IOS (the best).

Cancellation when
∑ |xi | � |

∑
xi |: DOS better than IOS.

22 / 108

Conclusion of the basic steps

It exists no universally better accurate summation algorithm

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Accuracy of the polynomial evaluation [n=50]

u

1/u

!2n cond

23 / 108

Computing sums more accurately: step 1

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

24 / 108

More accuracy but still conditioning: overview

Arbitrary precision but accuracy still condition dependant
Simulating more precision: double-double, quad-double, . . . , MPFR
Compensated algorithms: Kahan(65), . . . , Sum2(05), SumK(05)
Accuracy . u + cond × uK

No more n dependency while nu ≤ 1.

25 / 108

More accuracy but still conditioning: overview

Arbitrary precision but accuracy still condition dependant
Simulating more precision: double-double, quad-double, . . . , MPFR
Compensated algorithms: Kahan(65), . . . , Sum2(05), SumK(05)
Accuracy . u + cond × uK

No more n dependency while nu ≤ 1.

25 / 108

One old and famous solution

Algorithm (Kahan’s compensated summation (1965))
s = x1;

c = 0;
for i = 2 : n do
y = xi 	 c ;

t = s ⊕ y ;

c = (t 	 s)	 y ;

s = t

end for

Accuracy improvement in practice: −c approximates s ⊕ y ’s rounding error.

Compensated sum accuracy ≤ 2u + n
∑ |xi |O(u2).

26 / 108

One example

IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).
Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253 − 1

253

−(254 − 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253 − 1

253

−(254 − 2)

1

2

−1

The exact result is computed
The rounding errors are computed thanks to error-free transformations.

27 / 108

One example

IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).
Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253 − 1

253

−(254 − 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253 − 1

253

−(254 − 2)

1

2

−1

The exact result is computed

The rounding errors are computed thanks to error-free transformations.

27 / 108

One example

IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).
Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253 − 1

253

−(254 − 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253 − 1

253

−(254 − 2)

1

2

−1

The exact result is computed
The rounding errors are computed thanks to error-free transformations.

27 / 108

Compensation

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

28 / 108

The underlined idea of compensated algorithm

Compensation

1 Let’s compute the generated rounding errors

2 and use it further to compensate the whole computation.

−yapp

−x

s = fl(x + y)

x

x + y

+

−

−

s

yapp

y

δ

δ

+y

29 / 108

Compensating: the later the better?

Approximations in Kahan’s compensated sum

x1 = 2p+1, x2 = 2p+1 − 2, x3 = x4 = · · · = x6 = −(2p − 1)
computed sum = 1, compensated sum = 3, exact sum = 2 (TP).

|s| ≥ |y | or “exponent-wise” at least, round-to-nearest, order 2 rounding
error in y .

Pichat and Neumaier’s compensated summation (72,74)

Accumulate rounding errors and one final correction.

Compensated accuracy ≤ u|∑ xi |+ (0.75n2 + n)u2 ∑ |xi |.
No more cond, no initial sort and n ≤ n′max = 1/3u.

Priest’s doubly compensated summation (92)

Doubly compensated accuracy ≤ 2u|∑ xi |.
No more cond but initial sort of the summands and n ≤ nmax = 1/4u.

30 / 108

Computing sums more accurately: step 2

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

31 / 108

Next step: towards the best accuracy

Distillation: iterate until faithful or correct rounding

x⊕ yx+ y

Error free transformation (EFT) [x]→ [x (1)]→ · · · → [x∗]

s.t.
∑

xi =
∑

x∗i et [x∗] returns the expected rounded value.

Kahan (87), . . . , Zhu-Hayes: iFastSum (SISC-09)

More space to keep everything

Long accumulator, hardware oriented: Malcolm (71), Kulish (80)

Cutting the summands: AccSum (SISC-08), FastAccSum (SISC-09)

Summation at a given exponent: HybridSum (SISC-09), OnLineExact
(TOMS-10)

From faithful rounding to correct rounding

Choosing the “right side”: expensive in the break-point neighborhood

e.g. 1+ 2−53 ± 2−106

32 / 108

Next step: towards the best accuracy

Distillation: iterate until faithful or correct rounding

x⊕ yx+ y

Error free transformation (EFT) [x]→ [x (1)]→ · · · → [x∗]

s.t.
∑

xi =
∑

x∗i et [x∗] returns the expected rounded value.

Kahan (87), . . . , Zhu-Hayes: iFastSum (SISC-09)

More space to keep everything

Long accumulator, hardware oriented: Malcolm (71), Kulish (80)

Cutting the summands: AccSum (SISC-08), FastAccSum (SISC-09)

Summation at a given exponent: HybridSum (SISC-09), OnLineExact
(TOMS-10)

From faithful rounding to correct rounding
−→ Running-time and memory print are the discriminant factors

32 / 108

EFT to sum two floating-point numbers

2Sum (Knuth, 65), Fast2Sum (Dekker, 71) for base ≤ 2 and RTN.

a+ b = x + y , with a, b, x , y ∈ F and x = a⊕ b.

Algorithm (Knuth)

function [x,y] = 2Sum(a,b)
x = a⊕ b

z = x 	 a

y = (a	 (x 	 z))⊕ (b 	 z)

Algorithm (|a| > |b|, Dekker)
function [x,y] = Fast2Sum(a,b)
x = a⊕ b

z = x 	 a

y = b 	 z

33 / 108

Distillate
∑

xi , xi ∈ F

xn−1· · ·x4x3x2x1 xn

34 / 108

Distillate
∑

xi , xi ∈ F

s1

2Sum

e1

x1 xnxn−1· · ·x4x3x2

34 / 108

Distillate
∑

xi , xi ∈ F

s1e1 · · · xn−1 xnx4x3

n∑
1

xi = e1 + s1 +
n∑
3

xi

34 / 108

Distillate
∑

xi , xi ∈ F

s2

2Sum

e2

s1e1 · · · xn−1 xnx4x3

34 / 108

Distillate
∑

xi , xi ∈ F

s2e2e1 · · · xn−1 xnx4

n∑
1

xi = e1 + e2 + s2 +
n∑
4

xi

34 / 108

Distillate
∑

xi , xi ∈ F

e4e3 · · · en−2 sn−1e2e1 xn

n∑
1

xi =
n−2∑
1

ei + sn−1 + xn

34 / 108

Distillate
∑

xi , xi ∈ F

2Sum

sn
en−1

e3 en−2· · ·e4 sn−1e2e1 xn

34 / 108

Distillate
∑

xi , xi ∈ F

en−1 sne4e3 · · · en−2e2e1

n∑
1

xi =
n−1∑
1

ei + sn =
n∑
1

x
(1)
i

and one iterate within this new vector [x (1)] . . .

34 / 108

Let’s distillate!

EFT Distillation

x∗n

xnxn−1

· · ·

· · ·

x∗n−1x∗4

x4x3

x∗3x∗2x∗1

x1 x2

Theorem (Zhu-Hayes,09)
Terminating for IEEE-754 : Iterate the distillation
[x]→ [x (1)]→ · · · → [x (k)]→ · · · converges towards a stable state [x∗] such
that |x∗1 | < |x∗2 | < · · · < |x∗n |, x∗i ⊕ x∗i+1 = x∗i+1 et

∑
xi =

∑
x∗i .

Rmk : the convergence proof uses the round-to-even tie breaking rule.

We need a good stopping criteria!

35 / 108

EFT to sum n floating-point numbers

Rien ne se perd, rien ne se crée, tout se transforme (Anaxagore–Lavoisier)

EFT vector transformation: (Ogita-Rump-Oishi, 05)
[p1, p2, · · · , pn] 7−→ [q2, q3, · · · , qn, πn]

For (pi)1≤i≤n ∈ F, p1 + p2 = π2 + q2, p2 + p3 = π3 + q3, · · · ,

n∑
i=1

pi = πn +
n∑

i=2

qi , with πn = fl(
n∑

i=1

pi).

36 / 108

A priori stopping criteria: go away conditioning!

Sum2, SumK (Ogita-Rump-Oishi,05)

Theorem (OgRO,05)
For every pi in F,∑

pi =
∑

p′i = · · · =
∑

pK
i = · · · ,

cond(
∑

pK
i) = O(uK)× cond(

∑
pi)

37 / 108

Accuracy . u + cond × uK

38 / 108

Accuracy . u + cond × uK

38 / 108

Step 2: towards faithfully or correctly rounded sums

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

39 / 108

No more cond: new solutions

Distillation iFastSum (09)

Rounding errors quickly vanish in practice.

So distillation soon iterates on shorter vectors.

Recursive calls only for difficult cases, e.g. 1+ 2−53 + 2−106.

How to compute exact partial sums?

Exact summation: cut the summands

Faithfully rounded sum: AccSum (08), FastAccSum (09)

Correctly rounded sum: NearSum (09)

Exact summation: partial sum by exponant + distillation

Faithfully rounded sum: HybridSum (09), OnLineExact (10)

40 / 108

Computing sums as accurately as possible

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

41 / 108

iFastSum (09)

iFastSum = distallation SumK (K ≥ 2) with a dynamic control of the residual
error until the faithfully or correctly rounded value.

Memory overhead = O(1)

No more cond limitation: always faithfully or correctly rounded sum.

Rounding errors quickly vanish in practice.

So distillation soon iterates on shorter vectors.

Recursive calls only for difficult cases, e.g. 1+ 2−53 + 2−106.

42 / 108

iFastSum (Zhu-Hayes,09)

[x]
x1
x2

xi

xn

2Sum

43 / 108

iFastSum (Zhu-Hayes,09)

ei

s

[x]
x1
x2

xi

xn

2Sum

43 / 108

iFastSum (Zhu-Hayes,09)

e1
e2

[e]

s
en−1

ei

n∑
1

xi = s +
n−1∑
1

ei

43 / 108

iFastSum (Zhu-Hayes,09)

em

e ′count 6= 0

e ′2 6= 0
e ′1 6= 0

e ′i 6= 0

[e ′]

st

2Sum

e1
e2

en−1
s

[e]

Bounding the residual error em = (count)× 1/2ulp(max |st |)
43 / 108

iFastSum (Zhu-Hayes,09)

st

s

e ′count 6= 0

e ′2 6= 0
e ′1 6= 0

e ′i 6= 0

[e ′]

n∑
1

xi = s + st +
count∑

1

e′i

43 / 108

iFastSum (Zhu-Hayes,09)

2Sum

s

sts

st

e ′1 6= 0
[e ′]

e ′i 6= 0

e ′2 6= 0

e ′count 6= 0

n∑
1

xi = s + st +
count∑

1

e′i

43 / 108

iFastSum (Zhu-Hayes,09)

Stopping criteria in 2 steps

1 Stop the distillation when
em = 0 or em < HalfUlp(s)

2 Correct rounding: effect of em to s

and st

I 2 “recursive” calls of the
iFastSum’s main part
if st ± em modifies s or
Round3(s, (st±em)h, (st±em)l) 6= s.

until faithfulness

em
Distill [e ′, st]

2Sum

em

s

sts

st

e ′1 6= 0
[e ′]

e ′i 6= 0

e ′2 6= 0

e ′count 6= 0

43 / 108

How to stop to distillate!

Principe
Sharp approximation of the exact sum of 3 non overlapping values: 2
floating-points and 1 sign (the value does not matter).

s0 s1 ŝ2

Round3(s0, s1, sign(ŝ2)) = fl(s0 + s1 + ŝ2)

One test of s1

exponent manipulation

but no change of the rounding mode

44 / 108

Computing sums as accurately as possible

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

45 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exact

exact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exact

exact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

Faithful accuracy: AccSum (08), FastAccSum (09)

AccSum uses EFT ExtractVector (Fast2Sum)

EminEmax

X1

X2

X3

..
.

..
.

Xn

maxσ

K = 1

exact sum

K = 1
exact but not accurate

exactexact sum
K = 2

Thread 0

Thread 1

Thread 2

reproducible sum

Steps for sequential
Compute max.

Sum each shrunk

Steps for parallel
Local max (compute)

Max (reduce)

Local sum (compute)

Sum (reduce)

46 / 108

AccSum proportional to log2(cond).

In practice: how to compute σ and how to extract qi from pi :

M = dlog2(n + 2)e
σ = 2M ·max{|pi |}, for n + 2 ≤ 2M

Extraction of the higher part qi of pi : [qi , p
′
i] = Fast2Sum(σ, pi)

Properties

Number of extractions: proportional to log2(cond)

Number of summands limitations: n . 1/
√

u ≈ 7 · 107 (alternative exist for
larger n).

47 / 108

AccSum proportional to log2(cond).

In practice: number of extractions and flop

48 / 108

Computing sums as accurately as possible: step 2

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

49 / 108

Partial sums by exponent (sorting) + distillation

Zhu-Hayes : HybridSum (09), OnLineExact (10)

Exponent extraction and sorting, then distillation

Principle :
1 With no loss, transforming the entry vector to one or two (short) vectors

which size equals the exponent range: 2048 for IEEE-b64 ;
HybridSum : split + 1 short vector
OnLineExact : 2Sum+ 2 vectors concatenated in a very short vector (of non
zero entries)

2 then distillate this very short vector.

50 / 108

HybridSum (09) while n ≤ 7 · 107 in IEEE-b64

Idea : split and exact accumulation with
⊕

N < 2bt/2c
Exact for

[exp(xi)
l]

[exp(xi)
h]+

+

[0]
[1]

[a]

[2047]

[x]
x1
x2

xn

(xi)
h (xi)

l

51 / 108

OnLineExact (10)

Exact for
N < 2bt/2c

[a2][a1]
[0]
[1]

[2bt/2c]

[exp(xi)] +

2Sum

[x]
x1
x2

xi

xn

52 / 108

OnLineExact (10)

Then Swap([b1, b2], [a1, a2])

+[exp(y)]

When N > 2bt/2c

[b2][b1]

2Sum

[0]
[1]

y y ′

[exp(xi)]

[1]

[a1] [a2]
[0]

[2bt/2c]

52 / 108

OnLineExact (10)

[exp(xi)] +

[2bt/2c]

[a1] [a2]
[0]
[1]

2Sum

xn

xi

x2
x1
[x]

52 / 108

OnLineExact (10)

Return iFastSum(a, length(a));

a := [a1]&[a2] ;
Remove 0;

[a1]
[0]
[1]

[2bt/2c]

[a2]

52 / 108

More EFT and accurate algorithms

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

53 / 108

More accuracy: more results

Other EFT to compensate

Multiplication: a× b = (a⊗ b) + e

FMA: a× b + c = FMA(a, b, c) + e1 + e2, and
FMA(a, b, c) = RN(a× b + c)

Polynomial evaluation

Other compensated algorithms

Dot product

Horner and derivative (dsynthetic div.), de Casteljau (Bernstein), Clenshaw
(Chebychev)

54 / 108

Sterbenz’s lemma: when subtraction is exact

Theorem (Sterbenz, 72)
In a radix-β floating-point system with subnormal numbers, if x and y are finite
floating-point numbers such that

y

2
≤ x ≤ 2y ,

then x − y is a floating-point number.

Comments

Exact subtraction for the four IEEE-754 rounding-modes

Exact subtraction vs. catastrophic cancellation?

Used in the previous EFT sum proofs

55 / 108

EFT: the multiplication case

Theorem (Dekker)
The multiply rounding-error xy − (x ⊗ y) is a floating-point number when no
overflow occurs.

When one FMA is available, next algorithm computes the multiply-EFT:

xy = r1 + r2.

Algorithm (2ProdFMA)
r1 = FMA(x , y , 0); //r1 = x ⊗ y

r2 = FMA(x , y ,−r1); //r2 = xy − r1

56 / 108

The multiplication case when no available FMA

Let C = βs + 1 where s < p, the next algo splits the p-digit floating-point
number x in two parts xh, xl of p − s and s digits.

Algorithm (split - Veltkamp, 68)
r_shift = C ⊗ x

head = x 	 r_shift

xh = r_shift ⊕ head

xl = x 	 xh

Theorem (Dekker, 72; Boldo, 06)
When no overflow occurs,

x = xh + xl .

57 / 108

The multiplication case when no available FMA

When no overflow occurs, next algorithm computes the multiply-EFT:

xy = r1 + r2.

Algorithm (2prod - Dekker, 72)
(xh, xl) = split(x);

(yh, yl) = split(y);

r1 = x ⊗ y ;

high = −r1 ⊕ (xh ⊗ yh);

mid1 = high ⊕ (xh ⊗ yl);

mid2 = mid1 ⊕ (xl ⊗ yh);

r2 = mid2 ⊕ (xl ⊗ yl); //low part

58 / 108

The compensated dot product (Ogita-Rump-Oishi, 05)

EFT-DotProd:
∑n

i=1 xiyi = p +
∑n

i=1 πi +
∑n−1

i=1 σi =
∑2n

i=1 zi .

Algorithm (Compensated DotProd)
(s1, c1) = 2Prod(x1, y1);
for i = 2 : n do
(pi , πi) = 2Prod(xi , yi);

(si , σi) = 2Sum(pi , si−1);

ci = ci−1 ⊕ (πi ⊕ σi);

end for
return sn ⊕ cn;

Theorem (Ogita-Rump-Oishi, 05)
Compensated dot product accuracy ≤ u|∑n

i=1 xiyi |+O(n2u2)
∑ |xiyi |.

59 / 108

The compensated dot product (Ogita-Rump-Oishi, 05)

60 / 108

The compensated dot product (Ogita-Rump-Oishi, 05)

60 / 108

The Horner polynomial evaluation (Graillat-Langlois-Louvet, 07)

EFT-Horner:
∑n

i=0 aix
i = p +

∑n−1
i=0 πix

i +
∑n−1

i=0 σiy
i = p + π(x) + σ(x).

Algorithm (Compensated Horner)
rn = an;
for i = n − 1 : (−1) : 0 do
(pi , πi) = 2Prod(ri+1, x);

(ri , σi) = 2Sum(pi , ai);

qi = πi ⊕ σi ; //correcting polynomial coefficient
end for;
r = r0 ⊕ Horner(q, x);

return r ;

Theorem (Langlois-Louvet, 07)
Compensated Horner accuracy ≤ u|p(x)|+O(4n2u2)

∑n
i=0 |ai ||x i |.

61 / 108

The compensated Horner evaluation (Louvet’s PhD, 07)

1

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

10-18

103510301025102010151010105

Condition number

R
el

at
iv

e
fo

rw
ar

d
er

ro
r

u

1/u 1/u2

u
 +

 γ 2n
2 c

on
d(

p,
 x

)

γ 2n
 c

on
d(

p,
 x

)

Horner
CompHorner

62 / 108

The compensated Horner evaluation: FMA variations

 1

1e-2

1e-4

 1e-06

 1e-08

 1e-10

 1e-12

 1e-14

 1e-16

 1e-18

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35 1e+40

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

u

γn cond u + (1+u)γn
2 cond

Horner
HornerFMA

CompHornerFMA
CompHorner3FMA

DDHorner

63 / 108

Other compensated polynomial evaluations

Recent extensions

derivative Horner evaluation — synthetic division (Jiang et al., 12)

Clenshaw algorithm for Chebychev basis (Jiang et al., 11)

de Casteljau algorithm for Bernstein basis (Jiang et al., 10)

64 / 108

To conclude this Part 1

1 Summing n floating-point numbers: basic steps
Some algorithms
Some accuracy bounds

2 Computing sums more accurately
Some famous old and magic algorithms
Compensation
Distillate to understand and go further

3 Computing sums as accurately as possible
iFastSum: distillation again
Accsum
Hybridsum and OnLineExactSum

4 More EFT and accurate algorithms
Some more results

5 More accuracy: conclusion

65 / 108

More accurate sums: conclusion

An “ultimately accurate” floating-point summation algorithm cannot
be very simple. J.M. Muller et al. [HFPA,09]

A lot of algorithms!

Condition dependency and accuracy bounds for classic ones

Arbitrarily accurate compensated ones: Sum2, SumK

Faithfully or correctly rounded recent ones: AccSum, FastAccSum,
iFastSum, HybdridSum, OnLineExact

“In place” solutions vs. exponent manipulations

How to choose? Running time performance!

66 / 108

Part II

More reproducibility

67 / 108

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

68 / 108

Reproducibility failure in Telemac2D simulation

69 / 108

Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Original code

70 / 108

Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Non-reproducible
original code

70 / 108

Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Non-reproducible
original code

Reproducible
code

70 / 108

Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Non-reproducible
original code

Reproducible
code

reproducibility

70 / 108

Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Non-reproducible
original code

Reproducible
code

reproducibilityaccuracy

70 / 108

Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Non-reproducible
original code

Reproducible
code

reproducibilityaccuracy

70 / 108

Recovering numerical reproducibility

Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1

Reproducibility 6= Accuracy

Failures reported in numerical simulation for energy [21], dynamic weather
science [4], dynamic molecular [20], dynamic fluid [17]

How to debug? How to test? How to validate? How to receive legal
agreements?

Execution: Sequential 2 procs 4 procs p procs

Non-reproducible
original code

Reproducible
code

reproducibilityaccuracy

70 / 108

Today’s issues

Case study

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 modules: Tomawac, Telemac2D

Feasibility

How to recover reproducibility?

Sources of non-reproducibility?

Do existing techniques apply? how easily?

• Compensation yields reproducibility here!

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!

71 / 108

Today’s issues

Case study

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 modules: Tomawac, Telemac2D

Feasibility

How to recover reproducibility?

Sources of non-reproducibility?

Do existing techniques apply? how easily?

• Compensation yields reproducibility here!

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!

71 / 108

Today’s issues

Case study

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 modules: Tomawac, Telemac2D

Feasibility

How to recover reproducibility?

Sources of non-reproducibility?

Do existing techniques apply? how easily?

• Compensation yields reproducibility here!

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!
71 / 108

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

72 / 108

Parallel reduction and compensation techniques

Non associative floating point addition

The computed value depends on the operation order

Parallel reduction of undefined order generates reproducibility failure

Compensate rounding errors with error free transformations

73 / 108

Parallel reduction and compensation techniques

Non associative floating point addition

The computed value depends on the operation order

Parallel reduction of undefined order generates reproducibility failure

Compensate rounding errors with error free transformations

a b c d

a⊕b c⊕d

(a⊕b)⊕(c⊕d)

a b c d

a⊕b

(a⊕b)⊕c

((a⊕b)⊕c)⊕d6=

73 / 108

Parallel reduction and compensation techniques

Non associative floating point addition

The computed value depends on the operation order

Parallel reduction of undefined order generates reproducibility failure

Compensate rounding errors with error free transformations

a b c d

a⊕be1 c⊕d e2

(a⊕b)⊕(c⊕d)e3

a b c d

a⊕b f1

(a⊕b)⊕c f2

((a⊕b)⊕c)⊕d f3

((a⊕b)⊕(c⊕d)) ⊕ ((e1 ⊕ e2)⊕ e3) = (((a⊕b)⊕c)⊕d) ⊕((f1 ⊕ f2)⊕ f3)

Should be repeted for too ill-conditionned sums
73 / 108

Finite element assembly: the sequential case

The assembly step: V (i) =
∑

elements Wel(i)

compute the inner node values V (i)

accumulating local Wel for every el that contains i

!"

!"#
$$#

%&#

"!#

"#
&# '

'#
()*+,'-#

+#
*+#

The assembly loop
for p = 1,np //p: triangular local number (np=3)
for el = 1,nel

i = IKLE(el,p) %

<–- LOOP INDEX INDIRECTION

V(i) = V(i) + W(el,p) //i: domain global number
74 / 108

Finite element assembly: the sequential case

The assembly step: V (i) =
∑

elements Wel(i)

compute the inner node values V (i)

accumulating local Wel for every el that contains i

!"

!"#
$$#

%&#

"!#

"#
&# '

'#
()*+,'-#

+#
*+#

The assembly loop
for p = 1,np //p: triangular local number (np=3)
for el = 1,nel

i = IKLE(el,p) % <–- LOOP INDEX INDIRECTION
V(i) = V(i) + W(el,p) //i: domain global number

74 / 108

Finite element assembly: the parallel case

Interface point assembly: communications and reductions
V (i) =

∑
Dk

V (i) for sub-domains Dk , k = 1...p

sequential parallel sub-domains

inner nodes −→ interface points

V (i) = a VD1(i) = b VD2(i) = c

V (i) = b + c = a
Interface point assembly

Exact arithmetic
75 / 108

Finite element assembly: the parallel case

Interface point assembly: communications and reductions
V (i) =

⊕
Dk
V (i) for sub-domains Dk , k = 1...p

sequential parallel sub-domains

inner nodes −→ interface points

V (i) = â VD1(i) = b̂ VD2(i) = ĉ

V (i) = b̂ ⊕ ĉ 6= â
Interface point assembly

Floating point arithmetic

75 / 108

Basic ingredients

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

75 / 108

Sources of non reproducibility in Telemac2D

Culprits: theory

1 Building step: interface point assembly

2 Solving step (conjugate gradient): parallel matrix-vector and dot products

Culprits: practice = optimization

Interface point assembly and linear system solving are merged

Element-by-element storage (EBE) of the FE matrix
EBE parallel matrix-vector product: no BLAS
Everything is vector, no matrix!

Wave equation, “mass-lumping” and associated algebraic transformations
System decoupling and many diagonal matrices
Everything is vector, no matrix!

76 / 108

Sources of non reproducibility in Telemac2D

Culprits: theory

1 Building step: interface point assembly

2 Solving step (conjugate gradient): parallel matrix-vector and dot products

Culprits: practice = optimization

Interface point assembly and linear system solving are merged

Element-by-element storage (EBE) of the FE matrix
EBE parallel matrix-vector product: no BLAS
Everything is vector, no matrix!

Wave equation, “mass-lumping” and associated algebraic transformations
System decoupling and many diagonal matrices
Everything is vector, no matrix!

76 / 108

Sources of non reproducibility in Telemac2D

The Telemac2D FE steps

Solution U, V

diagonal resolution

conjugate gradient

Solution H

Interface point assembly:

A1d in each iteration

C2 = Bu − AuhH

C3 = Bv − AvhH

Interface point assembly:

C2,C3

System equation AX = C

A2,A3 : diagonal matrices

A1 = Ahh − AhuA
−1
2 Auh − AhvA

−1
3 Avh

C1 = Bh − AhuA
−1
2 Bu − AhvA

−1
3 Bv

Interface point assembly:

A2,A3,C1

Ahh Ahu Ahv
Auh Auu 0
Avh 0 Avv


H

U

V

 =

Bh
Bu
Bv



wave equation

A1 0 0
0 A2 0
0 0 A3


H

U

V

 =

C1
C2
C3



Mesh (elements, nodes)

Continuous domain

Discretisation

FE assembly +

algebraic computation

H

A1, C1

A2, A3

77 / 108

Sources of non reproducibility in Telemac2D

The Telemac2D FE steps

Solution U, V

Interface point assembly:

A1d in each iteration

C2 = Bu − AuhH

C3 = Bv − AvhH

Interface point assembly:

C2,C3

diagonal resolution

conjugate gradient

Solution U, V

Solution H

Objective
Correct sources of non-reproducibility

to compute reproducible system and solutions

System equation AX = C

A2,A3 : diagonal matrices

A1 = Ahh − AhuA
−1
2 Auh − AhvA

−1
3 Avh

C1 = Bh − AhuA
−1
2 Bu − AhvA

−1
3 Bv

Interface point assembly:

A2,A3,C1

Ahh Ahu Ahv
Auh Auu 0
Avh 0 Avv


H

U

V

 =

Bh
Bu
Bv



wave equation

A1 0 0
0 A2 0
0 0 A3


H

U

V

 =

C1
C2
C3



Mesh (elements, nodes)

Continuous domain

Discretisation

FE assembly +

algebraic computation

H

A1, C1

A2, A3

77 / 108

Recovering reproducibility in a finite element resolution

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

77 / 108

Recovering reproducibility in Telemac2D

Sources

FE assembly: diagonal of the matrices and second members

Resolution: EBE matrix-vector and dot products

Wave equation: algebraic transformations and diagonal resolutions

Reproducible resolution: principles
vector V → [V ,EV]→ V + EV

Computes EV in the FE assembly of V

Propagates EV over each V operation

Compensates all nodes while assembling the Interface Point

Compensate MPI parallel dot products that include MPI reduction

78 / 108

Reproducible FE assembly

i : any node; Wel(i): contribution for every el that contains i

Original FE assembly: V (i) =
∑

elements Wel(i)

V (i) = Wel1(i) +Wel2(i) + · · ·+Welni (i)

Modified FE assembly: [V (i),EV (i)] = ReprodAsselementsWel(i)

V (i) = Wel1(i) +Wel2(i) + · · ·+Welni (i)

↓ ↓ ↓
e1 e2 eni

EV (i) = e1 + e2 + · · ·+ eni−1

79 / 108

Reproducible interface point assembly

i : one interface point of D1,D2, · · · ,Dk−1,Dk

Original IP assembly: V (i) =
∑

Dk
V (i)

Communicate VDi to D1,D2, · · · and compute:
V (i) = VD1(i) + VD2(i) + · · ·+ VDk−1(i) + VDk

(i)

Modified IP assembly: [V (i),EV (i)] = ReprodAssDk
[V (i),EVDk

(i)]

Communicate [VDi ,EDVi
] to D1,D2, · · · and compute:

V (i) = VD1(i) + VD2(i) + · · ·+ VDk−1(i) + VDk
(i)

↓ ↓ ↓
δ1 δ2 δk−1

EV (i) = (EVD1
(i) + EVD2

(i) + δ1) + · · ·+ (EVDk−1
(i) + EVDk

(i) + δk−1)

Reproducibility: at the IP assembly step
[V ,EV] −→ V + EV compensates every node value

80 / 108

FE assembly: implementation

Main steps

For every vector value: FE assembly + IP assembly

ASSVEC subroutine

1 !X refers to VEC and ERRX refers to SVEC%E
2 DO IDP = 1 , NDP
3 DO IELEM = 1 , NELEM
4
5 X(IKLE(IELEM,IDP))=X(IKLE(IELEM,IDP))+W(IELEM,IDP)
6
7
8
9
10
11 ENDDO
12 ENDDO

1 !FE assembly in ASSVEC
2
3 CALL ASSVEC(VEC, IKLE, NPT ,NELEM,NELMAX,IELM1,
4 & T,INIT,LV,MSK,MASKEL,NDP)
5
6
7
8
9 !Interface point assembly in PARCOM

10 IF(ASSPAR) CALL PARCOM(SVEC,2,MESH)
11
12
13
14
15
16

81 / 108

Interface point assembly: implementation

1 ! Receive step
2 DO IL=1,NB_NEIGHB
3 IKA = NB_NEIGHB_PT(IL)
4 IPA = LIST_SEND(IL)
5 CALL P_IREAD(BUF_RECV(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,RECV_REQ(IL))
6
7 ENDDO
8 ! Send step
9 DO IL=1,NB_NEIGHB
10 IKA = NB_NEIGHB_PT(IL)
11 IPA = LIST_SEND(IL)
12 ! Initializes the communication arrays
13 K = 1
14 DO J=1,NPLAN
15 DO I=1,IKA
16 II=NH_COM(I,IL)
17 BUF_SEND(K,IL) =V1(II,J)
18
19 K=K+1
20 ENDDO
21 ENDDO
22 CALL P_IWRIT(BUF_SEND(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,SEND_REQ(IL))
23
24 ENDDO
25 ! Wait received messages
26 DO IL=1,NB_NEIGHB
27 IKA = NB_NEIGHB_PT(IL)
28 IPA = LIST_SEND(IL)
29 CALL P_WAIT_PARACO(RECV_REQ(IL),1)
30 K=1
31 DO J=1,NPLAN
32 DO I=1,IKA
33 II=NH_COM(I,IL)
34 V1(II,J)=V1(II,J)+ BUF_RECV(K,IL)
35
36
37
38
39 K=K+1
40 ENDDO
41 ENDDO
42 ENDDO

82 / 108

Reproducible FE assembly: implementation

Main steps

For every vector value: FE assembly + IP assembly + compensation

ASSVEC subroutine

1 !X refers to VEC and ERRX refers to SVEC%E
2 DO IDP = 1 , NDP
3 DO IELEM = 1 , NELEM
4 IF (MODASS.EQ.1)
5 & X(IKLE(IELEM,IDP))=X(IKLE(IELEM,IDP))+W(IELEM,IDP)
6 ELSEIF (MODASS.EQ.3) THEN
7 CALL 2SUM(X(IKLE(IELEM,IDP)),
8 & W(IELEM,IDP),X(IKLE(IELEM,IDP)),ERROR)
9 ERRX(IKLE(IELEM,IDP))=ERRX(IKLE(IELEM,IDP))+ERROR
10 ENDIF
11 ENDDO
12 ENDDO

1 ! Note: VEC is a reference to SVEC%R
2 IF(MODASS.EQ.1) THEN
3 CALL ASSVEC(VEC, IKLE, NPT ,NELEM,NELMAX,IELM1,
4 & T,INIT,LV,MSK,MASKEL,NDP)
5 ELSEIF (MODASS.EQ.3) THEN
6 CALL ASSVEC(VEC, IKLE, NPT ,NELEM,NELMAX,IELM1,
7 & T,INIT,LV,MSK,MASKEL,NDP,SVEC%E)
8 ENDIF
9 ! Implicit modification in PARCOM
10 IF(ASSPAR) CALL PARCOM(SVEC,2,MESH)
11 IF(ASSPAR.AND.MODASS.EQ.3) THEN
12 !The compensation of all the values
13 DO I = 1 , MESH%NPOIN
14 VEC(I)= VEC(I)+SVEC%E(I)
15 ENDDO
16 ENDIF

83 / 108

Reproducible interface point assembly: implementation

1 ! Receive step
2 DO IL=1,NB_NEIGHB
3 IKA = NB_NEIGHB_PT(IL)
4 IPA = LIST_SEND(IL)
5 CALL P_IREAD(BUF_RECV(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,RECV_REQ(IL))
6 CALL P_IREAD(BUF_RECV_ERR(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,RECV_REQ(IL))
7 ENDDO
8 ! Send step
9 DO IL=1,NB_NEIGHB
10 IKA = NB_NEIGHB_PT(IL)
11 IPA = LIST_SEND(IL)
12 ! Initializes the communication arrays
13 K = 1
14 DO J=1,NPLAN
15 DO I=1,IKA
16 II=NH_COM(I,IL)
17 BUF_SEND(K,IL) =V1(II,J)
18 BUF_SEND_ERR(K,IL) =ERRX(II)
19 K=K+1
20 ENDDO
21 ENDDO
22 CALL P_IWRIT(BUF_SEND(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,SEND_REQ(IL))
23 CALL P_IWRIT(BUF_SEND_ERR(1,IL),IAN*IKA*NPLAN*8,IPA,PARACO_MSG_TAG,SEND_REQ(IL))
24 ENDDO
25 ! Wait received messages
26 DO IL=1,NB_NEIGHB
27 IKA = NB_NEIGHB_PT(IL)
28 IPA = LIST_SEND(IL)
29 CALL P_WAIT_PARACO(RECV_REQ(IL),1)
30 K=1
31 DO J=1,NPLAN
32 DO I=1,IKA
33 II=NH_COM(I,IL)
34 ! Original version: V1(II,J)=V1(II,J)+ BUF_RECV(K,IL)
35 CALL 2SUM(V1(II,J),BUF_RECV(K,IL),V1(II,J),ERROR1)
36 CALL 2SUM(ERRV(II),BUF_RECV_ERR(K,IL),ERRV(II),ERROR2)
37 ERROR=ERROR1+ERROR2
38 ERRV(II)=ERRV(II)+ERROR
39 K=K+1
40 ENDDO
41 ENDDO
42 ENDDO

84 / 108

Reproducible algebraic operations

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

84 / 108

Tomawac case

Non-reproducible Tomawac
Wave propagation in coastal areas
Mesh node unknowns:
height, frequency and direction of the waves

10 20 30 40 50 60 70
Time step

10-17

10-16

10-15

10-14

M
ax

im
um

 R
el

at
iv

e
Er

ro
r v

s.
 S

eq
ue

nt
ia

l C
om

pu
ta

tio
n

FPAss P=2
FPAss P=4
FPAss P=8
FPAss P=16

85 / 108

Reproducible Tomawac

Accurate compensated summation [15]
Integer conversion [16]
Demmel-Nguyen’s reproducible sums [2]

10 20 30 40 50 60 70
Time step

10-17

10-16

10-15

10-14

Ma
xim

um
 R

ela
tiv

e E
rro

r v
s.

Se
qu

en
tia

l C
om

pu
ta

tio
n

CompAss P=2
CompAss P=4
CompAss P=8
CompAss P=16

CompAss P=2
CompAss P=4
CompAss P=8
CompAss P=16

acc

rep

10 20 30 40 50 60 70
Time step

10-17

10-16

10-15

10-14

Ma
xim

um
 Re

lat
ive

 Er
ro
r v

s.
Se

qu
en

tia
l C

om
pu

ta
tio

n

IntA P=2
IntA P=4
IntA P=8
IntA P=16

IntA P=2
IntA P=4
IntA P=8
IntA P=16

acc

rep

10 20 30 40 50 60 70
Time step

10-17

10-16

10-15

10-14

Ma
xim

um
 R

ela
tiv

e E
rro

r v
s.

Se
qu

en
tia

l C
om

pu
ta

tio
n

ReprodAssK2 P=2
ReprodAssK2 P=4
ReprodAssK2 P=8
ReprodAssK2 P=16

ReprodAssK1 P=2
ReprodAssK1 P=4
ReprodAssK1 P=8
ReprodAssK1 P=16

ReprodAssK1 P=2
ReprodAssK1 P=4
ReprodAssK1 P=8
ReprodAssK1 P=16

acc

rep

0 2 4 8 16
Processor numbers

100

101

102

Ra
tio

 or
igi

na
l v

er
sio

n

The time step = 70
Integer version
Compensated version
ReprodSum version

86 / 108

Reproducible algebraic operations

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

86 / 108

Algebraic operation: the vector case

Reproducible algebraic vector operations

openTelemac’s included library: BIEF

Entry-wise vector ops: copy, opp/inv., add/sub, Hadamard prod., . . .

Applies also for diagonal matrix

Propagate rounding errors to compensate while assembling IP

Example: Hadamard product

Original version
X ,Y 7−→ V = X ◦ Y
V (i) = X (i) · Y (i)

Modified version
[X ,EX], [Y ,EY] 7−→ [V ,EV]

with (V , eV) = 2Prod(X ,Y)

and EV = X ◦ EY + Y ◦ EX + eV

87 / 108

What is reproducible now?

Most of the linear system:

FE assembly

algebraic vector operations

interface point assembly

except:

the matrix of the H system

its dependencies: the second
members of the U and V

systems

Next step:

conjugate gradient

Partially reproducible Telemac2D

Diagonal resolutions:
C2 = Bu − AuhH,

C3 = Bv − AvhH.
Interface point assembly:

C2,C3

Solution U,V

Conjugate gradient :
Interface point assembly:
A1d in each iteration

Solution H

Wave equation:
A2,A3 : diagonal matrices,

A1 = Ahh − AhuA
−1
2 Auh − AhvA

−1
3 Avh,

C1 = Bh − AhuA
−1
2 Bu − AhvA

−1
3 Bv ,

Interface point assembly:
A2,A3,C1

H

A1,C1

A2, A3

88 / 108

Recovering reproducibility in a finite element resolution

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

88 / 108

Towards a reproducible conjugate gradient

Initialization: a given d0

r0 = AX0 − B;

ρ0 =
(r0, d0)

(Ad0, d0)
; X1 = X0 − ρ0d0

Iterations until stopping criteria:

rm = rm−1 − ρm−1Adm−1

dm = rm +
(rm, rm)

(rm−1, rm−1)
dm−1

ρm =
(rm, dm)

(dm, Adm)

X m+1 = X m − ρmdm

A = [A1, EA1]

B = C1

X = H

Non-reproducibility sources
EBE matrix-vector product

dot product
MPI reduction
weighted dot products for IP shared by p sub-domains

89 / 108

The EBE storage

M = D +
nel∑

el=1

Xel

nodes i ∈ [1, np], elements el ∈ [1, nel], element vertices j , k, l ∈ el

M is decomposed as:

1 assembled diagonal D[np] : D = [D(1), · · · ,D(np)]

2 elementary extra-diagonal Xel [6]:

Xel =

 · Xjk(el) Xjl(el)

Xkj(el) · Xkl(el)

Xlj(el) Xlk(el) ·

 = [Xel(1), · · · ,Xel(6)]

90 / 108

The EBE Matrix-Vector product

R = M · V = D · V +
nel∑

el=1

Xel · Vel

Steps of the EBE matrix-vector product

1 R1(i) = D(i) · V (i), i ∈ [1, np]

2 Xel .Vel = [Xel(1) · V (k),Xel(2) · V (l), · · · ,Xel(6) · V (k)], el ∈ [1, nel]

3 FE assembly → R2[np]: R2 =
∑nel

el=1 Xel · Vel

4 R = R1 + R2

5 IP assembly: R(i) =
∑

Dk
R(i) for all IP i

91 / 108

Reproducible EBE matrix-vector product

Original EBE matrix-vector product

R = D · V +
∑nel

el=1 Xel · Vel

R(i) =
∑

Dk
R(i)

Reproducible EBE matrix-vector product

[R,ER] = [D,ED]◦V + ReprodAssnel
el=1Xel · Vel

R(i) = ReprodAssDk
[R(i),ER(i)]

Compensation: R + ER

92 / 108

A reproducible conjugate gradient

Initialization: a given d0

r0 = AX0 − B;

ρ0 =
(r0, d0)

(Ad0, d0)
; X1 = X0 − ρ0d0

Iterations until stopping criteria:

rm = rm−1 − ρm−1Adm−1

dm = rm +
(rm, rm)

(rm−1, rm−1)
dm−1

ρm =
(rm, dm)

(dm, Adm)

X m+1 = X m − ρmdm

A = [A1, EA1]

B = C1

X = H

Non-reproducibility: sources and solutions
Reproducible EBE matrix-vector product

dot product
MPI reduction: a parallel compensated dot2
weights: (1/k, 1/k, . . . , 1/k)→ (1, 0, . . . , 0)

Reproducible operations −→ reproducible results

Same errors for both sequential and parallel executions

93 / 108

A reproducible conjugate gradient

Initialization: a given d0

r0 = AX0−B;

ρ0 =
(r0, d0)

(Ad0, d0)
; X1 = X0−ρ0·d0

Iterations until stopping criteria:

rm = rm−1−ρm−1·Adm−1

dm = rm+
(rm, rm)

(rm−1, rm−1)
·dm−1

ρm =
(rm, dm)

(dm, Adm)

X m+1 = X m−ρm·dm

A=[A1, EA1]

B=C1

X=H

Non-reproducibility: sources and solutions
Reproducible EBE matrix-vector product

dot product
MPI reduction: a parallel compensated dot2
weights: (1/k, 1/k, . . . , 1/k)→ (1, 0, . . . , 0)

Reproducible operations −→ reproducible results

Same errors for both sequential and parallel executions 93 / 108

Recovering reproducibility in a finite element resolution

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

93 / 108

Reproducible Telemac2D

Reproducible Telemac2D

Diagonal resolutions:
C2 = Bu − AuhH,

C3 = Bv − AvhH.
Interface point assembly:

C2,C3

Solution U,V

Conjugate gradient :
Interface point assembly:
A1d in each iteration

Solution H

Wave equation:
A2,A3 : diagonal matrices,

A1 = Ahh − AhuA
−1
2 Auh − AhvA

−1
3 Avh,

C1 = Bh − AhuA
−1
2 Bu − AhvA

−1
3 Bv ,

Interface point assembly:
A2,A3,C1

H

A1,C1

A2, A3

Execution: Sequential 2 procs 4 procs p procs

Original code
Non-reproducible
original code

Reproducible
code

reproducibilityaccuracy

5 10 15 20
Time step

10-18

10-16

10-14

10-12

10-10

10-8

10-6

M
ax

im
um

 R
el

at
iv

e
Er

ro
r v

s.
Se

qu
en

tia
l C

om
pu

ta
tio

n

COMP P=2
COMP P=4
COMP P=8

COMP P=2
COMP P=4
COMP P=8

acc

rep

Maximum relative error
gouttedo test case

94 / 108

Reproducible gouttedo!
Time step 1p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 2p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 3p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 4p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 5p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 6p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 7p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 8p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 9p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 10p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 11p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 12p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 13p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 14p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!
Time step 15p=1 p=2

p=4 p=8

95 / 108

Reproducible gouttedo!

Time step 15p=1 p=2

p=4 p=8

96 / 108

Efficiency

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

96 / 108

Runtime extra-cost for reproducible simulations

Measures, test cases and mesh sizes

hardware cycle counter: rdtsc

gouttedo

mesh sizes: 4624, 18225, 72361 nodes
(1, ≈ ×4, ≈ ×16)

#nodes
#proc. 4624 18225 72361

2 72 143 280
4 304 674 1368
8 501 1152 2020

Number of IP

Hardware and software env.

openTelemac v7.2

socket: Intel Xeon E5-2660 2.20GHz (L3 cache = 20 M)

2 sockets of 8 cores each

GNU Fortran 4.6.3, -O3

OpenMPI 1.5.4

Linux 3.5.0-54-generic

97 / 108

The core runtime extra-cost for reproducible gouttedo

gouttedo core: no input/output steps, just building+solving

0 2 4 8
processors

108

109

1010

1011

1012

#
cy

cl
es

x 1.64
x 1.83

x 2.21

x 2.34

x 1.31

x 1.44

x 1.59

x 1.88

x 1.16

x 1.23

x 1.43

x 1.71

Telemac v7, gouttedo
Original, #nodes= 4624
Reproducible, #nodes= 4624
Original, #nodes= 18225
Reproducible, #nodes= 18225
Original, #nodes= 72361
Reproducible, #nodes= 72361

98 / 108

Time to conclude

6 Motivation

7 Reproducibility failure in a finite element simulation
Sequential and parallel FE assembly
Sources of non reproducibility in Telemac2D

8 Recovering reproducibility
Reproducible parallel FE assembly
A first application: reproducible Tomawac
Reproducible algebraic operations
Reproducible conjugate gradient
Reproducible Telemac2D

9 Efficiency

10 More reproducibility: conclusion

98 / 108

Conclusion

Recovering numerical reproducibility

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 reproducible modules: Tomawac, Telemac2D

• Integration in the next openTelemac version: current work

Feasibility

How to recover reproducibility? Sources of non-reproducibility? Do existing
techniques apply? how easily?

• Hand-made analysis of the computing workflow

• Compensation yields reproducibility here!

• Fits well to the openTelemac’s vector library

• Other existing techniques also apply and more or less easily [11]

99 / 108

Conclusion

Recovering numerical reproducibility

Industrial scale software: openTelemac-Mascaret

Finite element simulation, domain decomposition, linear system solving

• 2 reproducible modules: Tomawac, Telemac2D

• Integration in the next openTelemac version: current work

Feasibility

How to recover reproducibility? Sources of non-reproducibility? Do existing
techniques apply? how easily?

• Hand-made analysis of the computing workflow

• Compensation yields reproducibility here!

• Fits well to the openTelemac’s vector library

• Other existing techniques also apply and more or less easily [11]

99 / 108

Conclusion

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!

Reproducibility at a larger scale: the whole openTelemac software suite

Does it still working for complex, large and real-life simulations?

• The two FE test cases are significant enough to validate the methodology

• Localization of the failure sources is difficult to automatize

• but the methodology application is easy for the software developpers

100 / 108

Conclusion

Efficiency

How much to pay for reproducibility?

• ×1.2↔ ×2.3 extra-cost which decreases as the problem size increases

• OK to debug, to validate and even to simulate!

Reproducibility at a larger scale: the whole openTelemac software suite

Does it still working for complex, large and real-life simulations?

• The two FE test cases are significant enough to validate the methodology

• Localization of the failure sources is difficult to automatize

• but the methodology application is easy for the software developpers

100 / 108

Other existing techniques

Existing techniques to recover numerical reproducibility in summation

Accurate compensated summation [15]

Demmel-Nguyen’s reproducible sums [2]

Integer convertion [16]

100 / 108

Part III

More performance

101 / 108

Développé en TP.

102 / 108

References I

D. H. Bailey.

Twelve ways to fool the masses when giving performance results on parallel computers.

Supercomputing Review, pages 54–55, Aug. 1991.

J. W. Demmel and H. D. Nguyen.

Fast reproducible floating-point summation.

In Proc. 21th IEEE Symposium on Computer Arithmetic. Austin, Texas, USA, 2013.

B. Goossens, P. Langlois, D. Parello, and E. Petit.

PerPI: A tool to measure instruction level parallelism.

In K. Jónasson, editor, Applied Parallel and Scientific Computing - 10th International
Conference, PARA 2010, Reykjavík, Iceland, June 6-9, 2010, Revised Selected Papers,
Part I, volume 7133 of Lecture Notes in Computer Science, pages 270–281. Springer,
2012.

Y. He and C. Ding.

Using accurate arithmetics to improve numerical reproducibility and stability in parallel
applications.

J. Supercomput., 18:259–277, 2001.

103 / 108

References II

J.-M. Hervouet.

Hydrodynamics of free surface flows: Modelling with the finite element method.

John Wiley & Sons, 2007.

N. J. Higham.

Accuracy and Stability of Numerical Algorithms.

SIAM, 2nd edition, 2002.

H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng, and F. Su.

Accurate evaluation of a polynomial in chebyshev form.

Applied Mathematics and Computation, 217(23):9702 – 9716, 2011.

H. Jiang, S. Graillat, C. Hu, S. Li, X. Liao, L. Cheng, and F. Su.

Accurate evaluation of the k-th derivative of a polynomial and its application.

J. Comput. Appl. Math., 243:28–47, May 2013.

H. Jiang, S. Li, L. Cheng, and F. Su.

Accurate evaluation of a polynomial and its derivative in bernstein form.

Computers & Mathematics with Applications, 60(3):744 – 755, 2010.

104 / 108

References III

P. Langlois and N. Louvet.

How to ensure a faithful polynomial evaluation with the compensated Horner algorithm?

In P. Kornerup and J.-M. Muller, editors, 18th IEEE International Symposium on
Computer Arithmetic, number ISBN 0-7695-2854-6, pages 141–149. IEEE Computer
Society, June 2007.

P. Langlois, R. Nheili, and C. Denis.

Numerical Reproducibility: Feasibility Issues.

In NTMS’2015: 7th IFIP International Conference on New Technologies, Mobility and
Security, pages 1–5, Paris, France, July 2015. IEEE, IEEE COMSOC & IFIP TC6.5 WG.

P. Langlois, R. Nheili, and C. Denis.

Recovering numerical reproducibility in hydrodynamic simulations.

In J. H. P. Montuschi, M. Schulte, S. Oberman, and N. Revol, editors, 23rd IEEE
International Symposium on Computer Arithmetic, number ISBN 978-1-5090-1615-0,
pages 63–70. IEEE Computer Society, July 2016.

(Silicon Valley, USA. July 10-13 2016).

105 / 108

References IV

N. Louvet.

Algorithmes compensés en arithmétique flottante : précision, validation, performances.

PhD thesis, Université de Perpignan Via Domitia, Nov. 2007.

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,
N. Revol, D. Stehlé, and S. Torres.

Handbook of Floating-Point Arithmetic.

Birkhäuser Boston, 2010.

T. Ogita, S. M. Rump, and S. Oishi.

Accurate sum and dot product.

SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

Open TELEMAC-MASCARET. v.7.0, Release notes.

www.opentelemac.org, 2014.

R. W. Robey, J. M. Robey, and R. Aulwes.

In search of numerical consistency in parallel programming.

Parallel Comput., 37(4-5):217–229, 2011.

106 / 108

www.opentelemac.org

References V

S. M. Rump.

Ultimately fast accurate summation.

SIAM J. Sci. Comput., 31(5):3466–3502, 2009.

S. M. Rump, T. Ogita, and S. Oishi.

Accurate floating-point summation – part I: Faithful rounding.

SIAM J. Sci. Comput., 31(1):189–224, 2008.

M. Taufer, O. Padron, P. Saponaro, and S. Patel.

Improving numerical reproducibility and stability in large-scale numerical simulations on
gpus.

In IPDPS, pages 1–9. IEEE, 2010.

O. Villa, D. G. Chavarría-Miranda, V. Gurumoorthi, A. Márquez, and S. Krishnamoorthy.

Effects of floating-point non-associativity on numerical computations on massively
multithreaded systems.

In CUG 2009 Proceedings, pages 1–11, 2009.

107 / 108

References VI

V. Weaver and J. Dongarra.

Can hardware performance counters produce expected, deterministic results?

In 3rd Workshop on Functionality of Hardware Performance Monitoring, 2010, pages
1–11, Atlanta, USA, 2010.

D. Zaparanuks, M. Jovic, and M. Hauswirth.

Accuracy of performance counter measurements.

In IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS 2009, April 26-28, 2009, Boston, Massachusetts, USA, pages 23–32, 2009.

Y.-K. Zhu and W. B. Hayes.

Correct rounding and hybrid approach to exact floating-point summation.

SIAM J. Sci. Comput., 31(4):2981–3001, 2009.

Y.-K. Zhu and W. B. Hayes.

Algorithm 908: Online exact summation of floating-point streams.

ACM Trans. Math. Software, 37(3):37:1–37:13, Sept. 2010.

version: May 22, 2017
108 / 108

	Summing n floating-point numbers: basic steps
	Some algorithms
	Some accuracy bounds

	Computing sums more accurately
	Some famous old and magic algorithms
	Compensation
	Distillate to understand and go further

	Computing sums as accurately as possible
	iFastSum: distillation again
	Accsum
	Hybridsum and OnLineExactSum

	More EFT and accurate algorithms
	Some more results

	More accuracy: conclusion
	More reproducibility
	Motivation
	Reproducibility failure in a finite element simulation
	Sequential and parallel FE assembly
	Sources of non reproducibility in Telemac2D

	Recovering reproducibility
	Reproducible parallel FE assembly
	A first application: reproducible Tomawac
	Reproducible algebraic operations
	Reproducible conjugate gradient
	Reproducible Telemac2D

	Efficiency
	More reproducibility: conclusion

	More performance
	References

