Floating-point lab work

Florent de Dinechin
Ecole PRECIS, May 2017

1 Floating-point under the microscope

1.1 Representable or not representable?

- Decompress TP-code.tgz. Compile it with gcc main.c, and run it. How many decimal digits seem significant in a float and in a double?
- Try a few other values, in particular integers such as 7.0. Which integers are exactly representable as float?
- Look at fp-struct.h. If you want to reimplement it in your favorite language, go ahead (but support is not guaranteed).

1.2 Exceptional numbers

- Implement the following loop:

  ```
  float x = 0.1;
  while(x!=0) {
    print_binary32(x);
    x=x/2;
  }
  print_binary32(x);
  ```

 Observe the apparition of subnormals.
- Replace the 0.1 with 1.0.
- Implement the same loop in Python (or your favorite scripting language), with a simple print of the value. Is it using binary32 or binary64?
- Replace the division by 2 with a multiplication by 2. What happens? Replace the while loop with a for loop of the right size.
- Construct a NaN and print it.

2 Solving the quadratic equation

To solve the quadratic equation $ax^2 + bx + c$, here are the formulas I learnt in school:

$$
\delta = b^2 - 4ac
$$

If $\delta \geq 0$,

$$
r = \frac{-b \pm \sqrt{\delta}}{2a}
$$
• Implement these formulas in C using floats on one side, and double on the other side. Square root is called \texttt{sqrtf} (float) or \texttt{sqrt} (double); It requires to \texttt{#include <math.h>} and add the \texttt{-lm} flag, e.g. \texttt{gcc main.c -lm}

• Compare the results for \(a=0.125; b=1000; c=1\);

• Compare the results for \(a=0.125; b=10000; c=1\);

• Explains what happens. Hint: look for possible cancellations.

• Enhance the code with a test that anticipates a possible cancellation and uses a different formula in this case.

3 About sums

The \texttt{sums.c} program implements various techniques to compute the sum of \(N\) integers.

• Test \texttt{TwoSum32} on \(16,000,000 + 0.125\), then on other values.

• The input array is composed of inverses of \(i\) rounded to floats, for \(1 < i < N = 1,000,000\). Prove that for this input array, the sum computed in double is exact.

• Run the program. Vary \(N\).

• Replace \(1/i\) by \(\cos(i)\): we now have numbers of different signs. Can you think of other strategies for the summation?