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In the present work, we propose a simple model-free approach for the computation of molecular dif-
fusion tensors from molecular dynamics trajectories. The method uses a rigid body trajectory of the
molecule under consideration, which is constructed a posteriori by an accumulation of quaternion-
based superposition fits of consecutive conformations. From the rigid body trajectory, we compute
the translational and angular velocities of the molecule and by integration of the latter also the cor-
responding angular trajectory. All quantities can be referred to the laboratory frame and a molecule-
fixed frame. The 6 × 6 diffusion tensor is computed from the asymptotic slope of the tensorial
mean square displacement and, for comparison, also from the Kubo integral of the velocity cor-
relation tensor. The method is illustrated for two simple model systems – a water molecule and a
lysozyme molecule in bulk water. We give estimations of the statistical accuracy of the calculations.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4823996]

I. INTRODUCTION

Anisotropic molecular diffusion plays an essential role
in many physicochemical processes and in medical imaging.
Such an anisotropy may be caused by the environment in
which the molecule under consideration diffuses or by the
form of the molecule itself. An example for the first case is the
diffusion of water molecules in anisotropic cell tissues probed
by magnetic resonance imaging.1, 2 Intrinsic anisotropic dif-
fusion plays a role in protein aggregation, protein-enzyme
encounters,3–7 and in the analysis of various spectroscopic
experiments. We mention here light scattering,8 quasi-elastic
neutron scattering,9 and nuclear magnetic resonance relax-
ation spectroscopy.10–12

Molecular dynamics (MD) simulations can contribute
valuable insight into anisotropic diffusion processes since
they yield a description of molecular dynamics on the atomic
scale and allow thus, in principle, an ab initio construction
of diffusion tensors. In this way, global molecular diffusion
can be described in detail which is usually not accessible to
experiments. The MD-based diffusion tensors may be subse-
quently used as input for simulations on coarse-grained time
and length scales. Despite these evident advantages, there are
not many molecular dynamics studies of anisotropic diffusion
of complex molecules. Only recently, a systematic study on
that subject has been published.13 Here, the principal com-
ponents (eigenvalues) of the rotational diffusion tensor in the
molecular frame are obtained by fitting simulated reorienta-
tional correlation times for an ensemble of randomly chosen
unit vectors in the molecular frame with an analytical expres-
sion containing these principal components. The method is
based on the assumption of small rotational anisotropy and an
implementation can be found in Ref. 14.

a)Electronic mail: gerald.kneller@cnrs-orleans.fr

The idea of this paper is to use a straightforward gener-
alization of the computation of translational diffusion coeffi-
cients, computing instead of a scalar mean-square displace-
ment the 6 × 6 mean-square diffusion tensor from the roto-
translational trajectory of the molecule under consideration
and extracting the components of the diffusion tensor from
the asymptotic slope of its time-dependent components. If the
molecule under consideration diffuses in an isotropic system,
an inherent anisotropy in its rotational motion can only be re-
vealed in a suitably chosen molecule-fixed frame. In this arti-
cle, we concentrate on the latter case, considering two simple
model systems:

� A water molecule diffusing in bulk water.
� A lysozyme molecule diffusing in bulk water.

The paper is organized as follows. In Secs. II and III, we
describe, respectively, the theoretical and algorithmic meth-
ods for the construction of diffusion tensors, Sec. IV describes
its calculations for the model systems described above, and a
résumé is presented in Sec. V.

II. THEORY

A. Eckart frame and angular velocity

In the following, we consider the roto-translational dif-
fusion of a non-spherical molecule diffusing in an isotropic
medium. If the molecule has internal degrees of freedom, its
shape might slightly change in the course of time and one
may define an average form with respect to an appropriately
defined molecule-fixed frame. The definition of such a frame
goes back to Eckart,15 who considered polyatomic molecules
whose internal dynamics is described by harmonic vibrations
about the equilibrium positions. Such a limitation is, how-
ever, not necessary and a more general definition of an Eckart
frame has been recently given in Refs. 16 and 17. The central
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point is that its rotational motion can be expressed as an ac-
cumulation of infinitesimal rotations, each describing the ro-
tation of a “virtual” rigid body which is defined by the instan-
taneous configuration of the molecule under consideration.
The latter follows as closely as possible the real motion of
the molecule. During an infinitesimal time interval, the mass-
weighted atomic positions of the instantaneous virtual rigid
body are obtained from a least-squares fit to the correspond-
ing positions in the real molecule. As described in Ref. 16,
this follows from Gauss’ principle of least constraint.18 The
cumulated infinitesimal rigid-body motions describe the dy-
namics of an accompanying frame which is fixed at the center
of mass of the molecule and whose initial orientation can be
arbitrarily chosen. Within this paper, this frame is referred to
as “molecule-fixed (Eckart) frame.”

In the following, we suppose to know the rotation matrix
R(t) which maps the laboratory-fixed basis vectors {ei} onto
the molecule-fixed basis vectors {εj (t)} of the Eckart frame
(i, j = 1, 2, 3). Its elements are given by

Rij (t) = ei · εj (t) (1)

and its construction has been described in Ref. 17. A brief
summary will be given later. The rigid body trajectory of the
molecule with respect to the laboratory-fixed frame is then
described by the rotation matrix R(t) and the center-of-mass
trajectory,

xCM (t) = 1

M

∑
α

mα xα(t), (2)

where M is the total mass of the molecule and mα the mass of
atom α. The time derivative of R(t) defines the components of
the angular velocity in the laboratory-fixed frame and in the
body-fixed Eckart frame through

d R(t)

dt
= �(t) · R(t), (3)

d R(t)

dt
= R(t) · �′(t), (4)

where � and �′ are skew symmetric matrices containing
the Cartesian components of the angular velocity in the
laboratory frame and in the molecule-fixed Eckart-frame,
respectively,

�(′) =

⎛
⎜⎝

0 −ω(′)
z ω(′)

y

ω(′)
z 0 −ω(′)

x

−ω(′)
y ω(′)

x 0

⎞
⎟⎠ . (5)

In both coordinate systems, the components of the angu-
lar velocity and the angular momentum, L = ∑

α mα rα ∧ ṙα

are related via the well-known expression θ · ω = L,
where θ is the tensor of inertia, with components
θij = ∑N

α=1 mα(|rα|2δij − rα,irα,j ). If the molecule under
consideration can perform motions about its equilibrium con-
figuration, the latter is, however, also time-dependent in the
molecule-fixed Eckart frame.

B. Tensorial mean square displacement
and diffusion tensor

For the following considerations, we define a roto-
translational velocity combining the Cartesian coordinates of
the translational velocity,

vCM (t) = 1

M

∑
α

mαvα(t), (6)

where vα(t) = dxα(t)/dt , with the angular velocity ω(t) into
a six-dimensional column vector

V (t) =
(

vCM (t)
ω(t)

)
. (7)

The corresponding components in the co-moving Eckart-
frame are obtained by

V ′(t) =
(

RT (t) 0

0 RT (t)

)
· V (t). (8)

All formulae derived in the following can be defined for
the laboratory frame and the Eckart frame. The prime indi-
cating the latter is here omitted. Defining a roto-translational
displacement of the molecule as

�(t) =
∫ t

0
dτ V (τ ), (9)

the time-dependent tensorial mean square displacement ma-
trix is computed via

W (t) = 〈�(t) · �T (t)〉. (10)

Assuming that the velocity correlation matrix is stationary,

〈V (t1) · V T (t2)〉 = 〈V (t1 + τ ) · V T (t2 + τ )〉, (11)

and introducing the abbreviation

Cvv(t) := 〈V (t) · V T (0)〉, (12)

expression (10) may be cast into the alternative form

W (t) =
∫ t

0
dτ (t − τ )

{
Cvv(τ ) + CT

vv(τ )
}
. (13)

Here, we have performed exactly the same steps as in the
derivation of the scalar mean-square displacement for the
translational motion of a tagged particle which can be found
in textbooks on statistical physics.19, 20 With these preliminar-
ies, we define the diffusion matrix as

D = 1

2

∫ ∞

0
dτ

{
Cvv(τ ) + CT

vv(τ )
}
, (14)

noting that Cvv(τ ) is not symmetric. Here, we exclude anoma-
lous diffusion, such that the integral (14) yields a matrix with
finite entries on the diagonal. Using the definition (14) of the
diffusion matrix, it follows from (13) that

W (t)
t�τC→ 2 D t + W0, (15)

where W0 is constant and τC is the slowest time scale in the
relaxation of the velocity correlation functions. The diffusion
matrix may be partitioned as

D =
(

DT T DT R

DRT DRR

)
, (16)
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where the 3 × 3 matrices correspond to pure translational,
pure rotational, and coupled translational-rotational motions.
The translational and rotational diffusion constant, respec-
tively, are defined as

Dtrans = tr{DT T }/3, (17)

Drot = tr{DRR}/3. (18)

III. NUMERICAL AND ALGORITHMIC APPROACH

A. Molecular dynamics simulations

The reference simulation for liquid water was performed
for 511 molecules in a cubic box at 300 K, using version 4.6.1
of the GROMACS package,21 with the SPCE force field.22

Coulomb interactions were treated with the Particle-Mesh-
Ewald (PME) method,23, 24 using a cutoff radius of 1 nm for
the interactions in direct space, and the integration of the
equations of motion was performed with the Velocity-Verlet
algorithm using a time step of 1 fs. The system was equili-
brated with a 200 ps run in NVT- and a subsequent 300 ps
simulation run in NPT-conditions. The production run was
performed for 1 ns in the NVE ensemble, saving all 106 con-
figurations for later analysis. Due to the fast librational mo-
tions of water, such a dense sampling of the stored trajectory
is necessary for an a posteriori calculation of the angular ve-
locity of the water molecules.

To compute the diffusion tensor of lysozyme, we per-
formed 10 independent MD simulations of one protein sur-
rounded by 16 462 water molecules in a cubic box of
L = 8.03039 nm side length. The initial configuration for the
heavy atoms was taken from entry 193L of the Brookhaven
Protein Data Bank25 (PDB) and hydrogen atoms have been
added according to the standard rules of stereochemistry.
Each production run was performed for 10 ns and preceded
by an equilibration run at ambient temperature and pres-
sure of slightly different length, in order to generate different
initial configurations. The simulations were performed with
GROMACS 4.5.4, using the AMBER99-SB force field26 for
the protein, the SPC/E model for water, and the PME method
for the calculation of Coulomb interactions. The equations of
motions were integrated using a Leap-Frog scheme with a
time step of �t = 1 fs. All production runs were performed
in the NVE ensemble, storing the configurations every 50 fs
for subsequent analysis.

B. Numerical calculation of the diffusion tensor

The calculation of the diffusion tensor starts from a full
MD trajectory of the molecule under consideration, {xα(n)},
which is sampled at discrete times t = n�t. Here, �t is the

sampling step of the MD trajectory and n = 0, 1, . . . , Nt − 1,
where Nt is the number of time frames in the MD trajectory.
In the following, the procedure is described step by step, dis-
tinguishing between the laboratory and the co-moving Eckart
frame.

1. We define rα(t) = xα(t) − xCM (t) to be the trajectory of
atom α with respect to the center-of-mass in the labora-
tory frame. The whole MD trajectory is translated such
that at n = 0, the center of mass of the molecule is lo-
cated at the origin,

xCM (0) = 0, (19)

and oriented such that the tensor of inertia corresponding
to the positions rα(0) is diagonal.

2. The center-of-mass trajectory describes the translational
motion of the molecule,

xCM (n) = 1

M

∑
α

mα xα(n). (20)

3. The trajectory of the rotational motion is described by
four quaternion parameters, q0, q1, q2, q3, satisfying
q2

0 + q2
1 + q2

2 + q2
3 = 1. These parameters are obtained

in the following way:

a. We define r int
α (t) to be the trajectory of the internal

atomic motions in the co-moving Eckart frame. The
procedure is started by setting

r int
α (0) = rα(0). (21)

The corresponding configurations are shown in Fig. 1
for water and in Fig. 6 for lysozyme.

b. Stepping through the MD trajectory, we perform a
series of quaternion-based superposition fits27 and
consecutive coordinate transformations yielding the
quaternion trajectory q(n) and the trajectory of the
internal atomic motions,

r int
α (n)

fit−→ rα(n + 1) yields q(n + 1) , (22)

r int
α (n + 1) = RT (q(n + 1)) · rα(n + 1). (23)

Here, n = 0, . . . , Nt − 1 and the fits are defined by the
condition

1

M

∑
α

mα

∥∥R(q(n + 1)) · r int
α (n) − rα(n + 1)

∥∥2

= Min., (24)

where the minimum is to be computed with respect to
the quaternion parameters q(n + 1) and the rotation
matrix has the form

R(q)=

⎛
⎜⎝

q2
0 + q2

1 − q2
2 − q2

3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)

2(q0q3 + q1q2) q2
0 + q2

2 − q2
1 − q2

3 2(−q0q1 + q2q3)

2(−q0q2 + q1q3) 2(q0q1 + q2q3) q2
0 + q2

3 − q2
1 − q2

2

⎞
⎟⎠. (25)
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FIG. 1. Orientation of the water molecule in the co-moving Eckart frame.

For more details about the construction of Eckart
frames, we refer to Ref. 17.

4. From the center-of-mass, we compute the corresponding
time derivative vCM (n) = ẋCM (n) using a central differ-
ence scheme,

vCM (n) ≈ xCM (n + 1) − xCM (n − 1)

2�t
. (26)

The velocity for the translational motion in the co-
moving Eckart frame is then obtained by

v′
CM (n) ≡ RT (q(n)) · vCM (n), n = 0, . . . , Nt . (27)

5. The angular velocity ω is determined in two steps. The
first consists in a numerical differentiation of the quater-
nion trajectory,

q̇(n) ≈ q(n + 1) − q(n − 1)

2�t
, (28)

and the second in the conversion from q̇(n) to ω(n). If
ω(n) contains the Cartesian components of the angular
velocity in the co-moving Eckart frame, it follows from
(3) and (4), respectively, that28

⎛
⎝ωx

ωy

ωz

⎞
⎠ = 2

⎛
⎝−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

⎞
⎠ ·

⎛
⎜⎜⎝

q̇0

q̇1

q̇2

q̇3

⎞
⎟⎟⎠
(29)

are the components of the angular velocity in the labora-
tory frame and that

⎛
⎝ω′

x

ω′
y

ω′
z

⎞
⎠ = 2

⎛
⎝−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

⎞
⎠ ·

⎛
⎜⎜⎝

q̇0

q̇1

q̇2

q̇3

⎞
⎟⎟⎠
(30)

are the components of the angular velocity in the body-
fixed Eckart frame.

6. From the velocities

V (′)(t) =
(

v
(′)
CM (t)

ω(′)(t)

)
, (31)

we construct the displacement trajectory

�(′)(t) =
(∫ t

0 dτ v
(′)
CM (τ )∫ t

0 dτ ω(′)(τ )

)
, (32)

computing the integral numerically with a second order
Newton-Cotes formula. For the spatial part in the labo-
ratory frame, this step is not explicitly performed since
xCM (t) = ∫ t

0 dτ vCM (τ ) is already given on input.
7. Two approaches are used to compute the diffusion

tensor:
a. D(′) is obtained from the asymptotic slope of the com-

ponents of the tensorial MSD (see Eq. (15)).
b. D(′) is obtained from the Kubo relation (14), using the

velocities V (′) given by Eq. (31). The correlation ma-
trix of the velocities is integrated numerically, using
a fixed upper integration limit.

C. Estimation of statistical inaccuracies

The statistical inaccuracy of diffusion tensors for
molecules diffusing in an isotropic medium can be estimated
by using the fact that in this case Dlab should have the form

Dlab =
(

Dtrans1 0

0 Drot1

)
, (33)

where Dtrans and Drot are, respectively, the translational and
rotational diffusion constant defined through Eqs. (17) and
(18). Due to statistical inaccuracies, relation (33) will, of
course, not be exactly fulfilled and to quantify the deviation
of Dlab from the ideal form we define the 3 × 3 matrices

δT T = DMD
lab,T T − DMD

trans1, (34)

δRR = DMD
lab,RR − DMD

rot 1, (35)

δT R = DMD
lab,T R, (36)

δRT = DMD
lab,RT , (37)

where the superscript “MD” indicates the diffusion tensor ob-
tained from the MD trajectory and

DMD
trans = tr

{
DMD

lab,T T

}/
3, (38)

DMD
rot = tr

{
DMD

lab,RR

}/
3, (39)

according to (17) and (18). The deviation of each of the matri-
ces δ given in (34)–(37) from the zero matrix are here quanti-
fied through the Frobenius norm,

δ =
√

tr{δT · δ}, (40)

and diffusion tensor elements are considered non-zero only if
they fulfill the relation

|Dij | > δ, (41)
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where the threshold δ is set to δTT, δRR, δTR, or δRT according
to the submatrix to which correspond the indices i, j.

D. Anisotropy

As a scalar measure for the translational and rotational
anisotropy, we use

ε = λmax − λmin

λ
, (42)

where λk are the eigenvalues of DT T or DRR , respectively,
and λ is the corresponding mean value,

λ = 1

3
(λ1 + λ2 + λ3). (43)

By construction, ε is invariant under rotations of the coor-
dinate system and we note that λ = Dtrans or λ = Drot, de-
pending on which of the two diffusion tensors DT T or DRR is
considered.

E. Availability of software and data

An ActivePaper29 containing all the software, input
datasets, and results from this study is available as the supple-
mentary material.30 The datasets can be inspected with any
HDF5-compatible software, e.g., the free HDFView.31 Run-
ning the programs on different input data requires the Ac-
tivePaper software.32 These files also contain plots for all the
components of all the correlation functions and mean-square
displacements we have computed and of which we show only
a selection in this article.

IV. RESULTS

A. Diffusion tensor for SPC/E water

According to the SPC/E model, the simulated water
molecules are rigid and the Eckart frame simply follows the
real rigid body motion of the molecule under consideration.
Using the MSD method and averaging over the contributions
from all 511 molecules in the system, the diffusion tensor in
the laboratory frame is found to be

DMSD
lab =

⎛
⎜⎜⎜⎜⎜⎜⎝

2.19 × 10−3 0 0 0 0 0
0 2.17 × 10−3 0 0 0 0
0 0 2.17 × 10−3 0 0 0
0 0 0 2.03 × 10−1 0 0
0 0 0 0 2.03 × 10−1 0
0 0 0 0 0 2.04 × 10−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (44)

and the Kubo method yields very similar components,

DKubo
lab =

⎛
⎜⎜⎜⎜⎜⎜⎝

2.18 × 10−3 0 0 0 0 0
0 2.16 × 10−3 0 0 0 0
0 0 2.15 × 10−3 0 0 0
0 0 0 2.03 × 10−1 0 0
0 0 0 0 2.03 × 10−1 0
0 0 0 0 0 2.04 × 10−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (45)

Here, all non-zero elements fulfill the condition (41) and the thresholds for the components in the TT, RR, TR, and RT partition,
respectively, are resumed in Table I. The same values are used for the calculation of the diffusion tensor in the molecule-fixed
frame, which is depicted in Fig. 1. Averaging again over the contributions of all molecules in the simulation box, we find

DMSD
mol =

⎛
⎜⎜⎜⎜⎜⎜⎝

3.19 × 10−3 0 0 0 6.19 × 10−3 0
0 2.03 × 10−3 0 1.02 × 10−3 0 0
0 0 1.71 × 10−3 0 0 0
0 1.02 × 10−3 0 1.14 × 10−1 0 0

6.19 × 10−3 0 0 0 2.1 × 10−1 0
0 0 0 0 0 2.73 × 10−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(46)

with the MSD method and

DKubo
mol =

⎛
⎜⎜⎜⎜⎜⎜⎝

3.21 × 10−3 0 0 0 6.30 × 10−3 0
0 2.02 × 10−3 0 1.04 × 10−3 0 0
0 0 1.70 × 10−3 0 0 0
0 1.04 × 10−3 0 1.14 × 10−1 0 0

6.30 × 10−3 0 0 0 2.11 × 10−1 0
0 0 0 0 0 2.72 × 10−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(47)
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TABLE I. Estimated thresholds for the elements of the diffusion matrix of a
SPC/E water molecule. The upper and lower values correspond, respectively,
to the Kubo method and the MSD method.

TT TR

TT 4.3 × 10−5 2.2 × 10−4

3.7 × 10−5 2.3 × 10−4

RT 2.2 × 10−4 9.4 × 10−4

2.3 × 10−4 1.1 × 10−3

with the Kubo method, which again leads to very similar
components. One recognizes the presence of translational and
rotational anisotropies, as well as a significant translation-
rotation coupling. The latter indicates preferred screw mo-
tions, combining translations along the x-axis with rotations
about the y-axis and vice versa.

Figures 2 and 3 show the MSDs for the translational
and rotational motion, respectively, along the x, y, z-axes in
the molecule-fixed frame (upper part) and in the laboratory
frame (lower part). Here, the gray zones indicate the fit in-
tervals for expression (15). The differences clearly indicate
an anisotropy for both translational and rotational motions,
which is confirmed by looking at the corresponding transla-
tional and angular velocity autocorrelation functions depicted
in Figs. 4 and 5. Here, the gray regions indicate the integration
intervals which have been used to obtain the diffusion tensor
by a numerical approximation of the Kubo integral (14).

All relevant parameters are resumed in Table II. The
translational diffusion constant is close to the experimental
value of Dtrans = 2.4 × 10−3 nm2/ps at 300 K, which is ob-
tained by interpolation from the data in Ref. 33. The ro-
tational diffusion constant is, in contrast, somewhat larger
than in experiments. From the Debye relaxation times τrot

published in Ref. 34, we find for 300 K by interpolation
Drot = 1.27 × 10−1 ps−1, where Drot = 1/τrot. The calcula-
tion of hydrodynamic radii has been performed according to

FIG. 2. Diagonal terms of the translational MSD tensor for SPC/E water
in the molecule-fixed frame (upper part) and in the laboratory frame (lower
part). The gray zone indicates the fit region for expression (15).

FIG. 3. As Fig. 2, but for the rotational part of the MSD tensor.

FIG. 4. Diagonal terms of the translational velocity correlation tensor for
SPC/E water in the molecule-fixed frame (upper part) and in the laboratory
frame (lower part). The gray zone indicates the integration interval for the
numerical calculation of expression (14).

FIG. 5. As Fig. 4, but for the rotational part of the velocity correlation tensor.
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TABLE II. Diffusion constants, hydrodynamic radii, and anisotropy parameters for a SPC/E water molecule. The indices “lab” and “mol” refer to the laboratory
and molecule-fixed (Eckart) frame and the upper and lower values in each entry to, respectively, the Kubo and the MSD method for the calculation of the
diffusion tensor.

Dt [nm2/ps] Dr [1/ps] aT [nm] aR [nm] εT εR

Lab 2.16 × 10−3

2.17 × 10−3
2.03 × 10−1

2.03 × 10−1
9.91 × 10−2

9.86 × 10−2
9.25 × 10−2

9.25 × 10−2
2.81 × 10−2

2.38 × 10−2
6.24 × 10−3

7.01 × 10−3

Mol 2.31 × 10−3

2.31 × 10−3
1.99 × 10−1

1.99 × 10−1
9.29 × 10−2

9.29 × 10−2
9.31 × 10−2

9.32 × 10−2
6.55 × 10−1

6.43 × 10−1
7.97 × 10−1

8.00 × 10−1

the Stokes-Einstein formulae,

Dt = kBT

6πηa
, (48)

Dr = kBT

8πηa3
. (49)

Although it is not evident that a macroscopic hydrodynamic
theory can be applied at the scale of a single water molecule,
the results of a ≈ 0.09 − 0.1 nm for both the translational and
the rotational hydrodynamic radius are in agreement with the
size of a water molecule and demonstrate the consistency of
the calculations. The latter is also reflected in the anisotropy
parameters, which depend only very little on the method used
for the calculation of the diffusion tensor and which show

that the anisotropy in the molecule-fixed frame is statistically
significant.

B. Lysozyme

Fig. 6 displays the orientation of the lysozyme molecule
in the molecule-fixed Eckart frame which is also the starting
configuration of the reoriented MD trajectory. The total size
of the MD box is indicated in light blue. As indicated earlier,
the diffusion tensor for this molecule was computed by av-
eraging over 10 independent MD simulations, with different
initial configurations. Here, the statistical accuracy is clearly
less good than in the example for water. Not only the number
of independent trajectories is much smaller, but the dynamics
is also much slower. Using the MSD approach, we find for the
diffusion tensor in the laboratory frame

DMSD
lab =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.93 × 10−4 0 0 0 0 0
0 2.07 × 10−4 0 0 0 0
0 0 1.97 × 10−4 0 0 0
0 0 0 9.98 × 10−5 0 0
0 0 0 0 9.94 × 10−5 0
0 0 0 0 0 1.01 × 10−4

⎞
⎟⎟⎟⎟⎟⎟⎠

(50)

which is to be compared to the result of the Kubo method,

DKubo
lab =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.92 × 10−4 0 0 0 0 0
0 2.05 × 10−4 0 0 0 0
0 0 1.94 × 10−4 0 0 0
0 0 0 1.03 × 10−4 0 0
0 0 0 0 9.98 × 10−5 0
0 0 0 0 0 1.02 × 10−4

⎞
⎟⎟⎟⎟⎟⎟⎠

. (51)

Again both methods yield almost identical results, but the isotropy for both translational and rotational motion in the laboratory
frame is less well established than for the diffusion tensor of water. In this context, we refer to Table III which displays the
thresholds which have been computed and used for the components of the diffusion tensor. Using them again in the molecule-
fixed frame, we obtain

DMSD
mol =

⎛
⎜⎜⎜⎜⎜⎜⎝

2.03 × 10−4 0 0 0 0 0
0 1.99 × 10−4 0 0 0 0
0 0 1.95 × 10−4 0 0 0
0 0 0 1.00 × 10−4 0 0
0 0 0 0 1.07 × 10−4 0
0 0 0 0 0 9.36 × 10−5

⎞
⎟⎟⎟⎟⎟⎟⎠

(52)
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with the MSD method and the Kubo method yields

DKubo
mol =

⎛
⎜⎜⎜⎜⎜⎜⎝

2. × 10−4 0 0 0 0 0
0 1.98 × 10−4 0 0 0 0
0 0 1.91 × 10−4 0 0 0
0 0 0 1.01 × 10−4 0 0
0 0 0 0 1.07 × 10−4 0
0 0 0 0 0 9.69 × 10−5

⎞
⎟⎟⎟⎟⎟⎟⎠

. (53)

Within the available statistical accuracy, the translational mo-
tion is found to be isotropic and for the rotational motion only
a very small anisotropy can be detected. The rotation about
the molecule-fixed z′-axis is a bit slower than those about the
x′- and y′-axes. The coupling of translational and rotational
motions can be neglected. The above findings are confirmed
by looking at the corresponding MSDs, which are depicted
in Figs. 7 and 8. The gray zones indicate again the fit re-
gion for expression (15). The first 20 ps are excluded since
ballistic effects are here important as a result of the large
mass of the lysozyme molecule. One recognizes the parabolic
form of Wii(t) ≈ 〈v2

ii〉t2 for small times. Although the ve-
locity autocorrelation functions (VACFs) for the translational
and rotational motion, which are displayed in Figs. 9 and 10,
respectively, do not exhibit any sign of translational or rota-
tional anisotropy, the slight anisotropy for the rotational mo-
tion found by the MSD approach is confirmed by the nu-
merical evaluation of the Kubo integral (14). The integration
intervals are again indicated by the gray zones.

The essential parameters of the calculations are given
in Table IV. The calculations by the MSD and the Kubo
method yield again consistent results for the translational and
rotational diffusion constants, which are identical in the

FIG. 6. Ball and stick representation of the lysozyme molecule correspond-
ing to the initial configuration {r int

α (0)} in the Eckart frame. The center-of-
mass of the molecule coincides with the center of the MD box, which is
given in blue.

laboratory and in the molecule-fixed frame. The fact that the
anisotropy parameters are smaller in the molecule-fixed than
in the laboratory frame shows that the motional anisotropy
is below the statistically relevant threshold and the diffu-
sional motion of the lysozyme molecule must be consid-
ered isotropic, as far as the present simulation analysis is
concerned. As for the case of water, we obtain similar val-
ues for the translational and rotational hydrodynamic radii,
which are, however, smaller than the experimental value of
a = 1.77 nm found by quasielastic light scattering.35

V. RÉSUMÉ

We have presented two approaches for the calculation
of molecular diffusion tensors from MD simulations, which
are based on the relation between the MSD tensor and the

TABLE III. Estimated thresholds for the elements of the diffusion matrix of
a lysozyme molecule. The upper and lower values correspond, respectively,
to the Kubo method and the MSD method.

TT TR

TT 2.1 × 10−5

2.3 × 10−5
7.7 × 10−6

1.0 × 10−5

RT 7.7 × 10−6

1.0 × 10−5
3.6 × 10−6

2.9 × 10−6

FIG. 7. Diagonal terms of the translational MSD tensor for lysozyme in the
molecule-fixed frame (upper part) and in the laboratory frame (lower part).
The gray zone indicates the fit region for expression (15).
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FIG. 8. As Fig. 7, but for the rotational part of the MSD tensor.

FIG. 9. Diagonal terms of the translational velocity correlation tensor for
lysozyme in the molecule-fixed frame (upper part) and in the laboratory frame
(lower part). The gray zone indicates the integration interval for the numerical
calculation of expression (14).

FIG. 10. As Fig. 9, but for the rotational part of the velocity correlation
tensor.

TABLE IV. Diffusion constants, hydrodynamic radii, and anisotropy pa-
rameters for a lysozyme molecule. The indices “lab” and “mol” refer to the
laboratory and molecule fixed (Eckart) frame and the upper and lower values
in each entry to, respectively, the Kubo and the MSD method for the calcula-
tion of the diffusion tensor.

aT aR

Dt [nm2/ps] Dr [1/ps] [nm] [nm] εT εR

Lab 1.97 × 10−4

1.99 × 10−4
1.02 × 10−4

1.00 × 10−4
1.09
1.08

1.17
1.17

1.51 × 10−1

1.60 × 10−1
4.97 × 10−2

3.96 × 10−2

Mol 1.97 × 10−4

1.99 × 10−4
1.02 × 10−4

1.00 × 10−4
1.09
1.08

1.17
1.17

5.43 × 10−2

5.63 × 10−2
1.29 × 10−1

1.41 × 10−1

corresponding velocity correlation tensor. In the first case, the
diffusion tensor is inferred from the asymptotic slope of the
components of the MSD tensor and in the second by Kubo in-
tegrals of the corresponding correlation functions. The trans-
lational motion is described by the center-of-mass trajectory
of the molecule and the angular trajectories are constructed by
an accumulation of virtual rigid body motions which are con-
structed a posteriori from a given MD trajectory. For this pur-
pose, we use quaternion-based rigid body fits of consecutive
molecular conformations. From the resulting quaternion tra-
jectory, we construct the components of the angular velocity
and a subsequent integration yields the angular trajectories of
the molecule. From a conceptual point of view, the approach
is straightforward and can be considered as a generalization of
the usual approaches to compute translational diffusion coeffi-
cients. Using 511 rigid SPC/E water molecules in a cubic box
as a first test case, we were able to evaluate the reliability of
the method, since the molecular diffusion tensor can be aver-
aged over the contributions from all molecules in the box. We
found clear anisotropies in the diffusional motion of the water
molecules as well as a pronounced translation-rotation cou-
pling. As a second test case, we computed the diffusion tensor
for a flexible lysozyme molecule in a cubic water box, averag-
ing the results of ten independent MD simulations. Within the
statistical limits, no translation-rotation coupling is observed
and the diffusive dynamics is found to be almost isotropic. For
both test cases, we find coherent results for the translational
and rotational diffusion constants and the corresponding hy-
drodynamic radii.
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